Skip to main content
Log in

Maxey–Riley equation: newer perspective

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Non-integer-order derivatives have proven useful while modelling natural systems involving memory effects. In this article, we analyse the Maxey–Riley (M–R) equation that models the motion of a small particle in a non-uniform flow field. Fractional derivative arises naturally as a history term. We study the M–R equation in terms of fractional differential equations, a subject very well studied in recent times. This approach helps in gaining a deeper understanding of the underlying phenomenon. We observe solution curves having self-intersections, which is a novel feature of fractional-order dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and material

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

Code Availability

Basic Mathematica commands were used to plot the solutions and can be provided by the corresponding author upon request.

References

  1. Borzì A (2020) Modelling with ordinary differential equations: a comprehensive approach. Chapman and Hall, Oxon

    Book  Google Scholar 

  2. Moghadas SM, Jaberi-Douraki M (2018) Mathematical modelling. Wiley, p 07030

    Book  Google Scholar 

  3. Volterra V (1932) Theory of functionals and of integral and integro-differential equations. Bull Am Math Soc 38(1):623

    MathSciNet  Google Scholar 

  4. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, San Diego

    Google Scholar 

  5. Kobayashi MH, Coimbra CF (2005) On the stability of the Maxey–Riley equation in nonuniform linear flows. Phys Fluids 17(11):113301. https://doi.org/10.1063/1.2128254

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Coimbra C, Rangel R (2000) Unsteady heat transfer in the harmonic heating of a dilute suspension of small particles. Int J Heat Mass Transf 43(18):3305–3316. https://doi.org/10.1016/S0017-9310(99)00381-6

    Article  CAS  Google Scholar 

  7. Tarasov VE (2020) Mathematical economics: application of fractional calculus. Mathematics 8(5):660. https://doi.org/10.3390/math8050660

    Article  Google Scholar 

  8. Bolster D, Benson DA, Singha K (2017) Upscaling chemical reactions in multicontinuum systems: when might time fractional equations work? Chaos Soliton Fract 102:414–425. https://doi.org/10.1016/j.chaos.2017.04.028

    Article  ADS  MathSciNet  Google Scholar 

  9. Ionescu C, Lopes A, Copot D et al (2017) The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci 51:141–159. https://doi.org/10.1016/j.cnsns.2017.04.001

    Article  MathSciNet  Google Scholar 

  10. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039

    Article  MathSciNet  Google Scholar 

  11. Daftardar-Gejji V (ed) (2019) Fractional calculus and fractional differential equations. Springer

    Google Scholar 

  12. Atangana A, Koca I (2017) Model of thin viscous fluid sheet flow within the scope of fractional calculus: fractional derivative with and no singular kernel. Fundam Inform 151(1–4):145–159. https://doi.org/10.3233/FI-2017-1484

    Article  MathSciNet  Google Scholar 

  13. Qayyum M, Ismail F, Sohail M et al (2021) Numerical exploration of thin film flow of mhd pseudo-plastic fluid in fractional space: utilization of fractional calculus approach. Open Phys 19(1):710–721. https://doi.org/10.1515/phys-2021-0081

    Article  CAS  Google Scholar 

  14. Failla G, Zingales M (2020) Advanced materials modelling via fractional calculus: challenges and perspectives. Philosop Trans R Soc A 378(2172):20200050. https://doi.org/10.1098/rsta.2020.0050

    Article  ADS  Google Scholar 

  15. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889. https://doi.org/10.1063/1.864230

    Article  ADS  Google Scholar 

  16. Stokes GG et al (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc 9:8

    ADS  Google Scholar 

  17. Boussinesq J (1885) Sur la resistance quoppose un fluide indefini en repos, sans pesanteur, au mouvement varie d’une sphere solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carres et produits soient negligiables. C R Acad Sc Paris 100:935–937

    Google Scholar 

  18. Basset AB (1887) On the motion of a sphere in a viscous liquid. Proc R Soc Lond Ser I 43:174–175

    Google Scholar 

  19. Oseen C (1927) Hydromechanik. Akademische, Leipzig

    Google Scholar 

  20. Coimbra C, L’esperance D, Lambert R et al (2004) An experimental study on stationary history effects in high-frequency stokes flows. J Fluid Mech 504:353–363. https://doi.org/10.1017/S002211200400789X

    Article  ADS  CAS  Google Scholar 

  21. Farazmand M, Haller G (2015) The Maxey–Riley equation: existence, uniqueness and regularity of solutions. Nonlinear Anal Real World Appl 22:98–106. https://doi.org/10.1016/j.nonrwa.2014.08.002

    Article  MathSciNet  Google Scholar 

  22. Prasath SG, Vasan V, Govindarajan R (2019) Accurate solution method for the Maxey–Riley equation, and the effects of basset history. J Fluid Mech 868:428–460. https://doi.org/10.1017/jfm.2019.194

    Article  ADS  MathSciNet  Google Scholar 

  23. Matignon D (1996) Stability results for fractional differential equations with applications to control processing. Comput Eng Syst Appl 2:963–968

    Google Scholar 

  24. Kaslik E, Sivasundaram S (2012) Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal Real World Appl 13(3):1489–1497. https://doi.org/10.1016/j.nonrwa.2011.11.013

    Article  MathSciNet  Google Scholar 

  25. Deshpande A, Daftardar-Gejji V, Vellaisamy P (2019) Analysis of intersections of trajectories of systems of linear fractional differential equations. Chaos 29(1):13113. https://doi.org/10.1063/1.5052067

    Article  ADS  MathSciNet  Google Scholar 

  26. Bhalekar S, Patil M (2018) Singular points in the solution trajectories of fractional order dynamical systems. Chaos 28(11):113123. https://doi.org/10.1063/1.5054630

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  27. Dimovski I (1982) Convolutional calculus, publishing house of the Bulgarian academy of sciences. Sophia

  28. Luchko Y, Gorenflo R (1999) An operational method for solving fractional differential equations with the caputo derivatives. Acta Math Vietnam 24(2):207–233

    MathSciNet  Google Scholar 

  29. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier, Amsterdam

    Book  Google Scholar 

  30. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, Hoboken, New Jersey

    Google Scholar 

  31. Landau LD, Lifshitz EM (2013) Fluid mechanics: Landau and Lifshitz: course of theoretical physics, vol 6. Elsevier

    Google Scholar 

  32. Bhalekar S, Patil M (2019) Can we split fractional derivative while analyzing fractional differential equations? Commun Nonlinear Sci 76:12–24. https://doi.org/10.1016/j.cnsns.2019.04.009

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Abhiram Hegade.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegade, A., Daftardar-Gejji, V. & Bhalekar, S. Maxey–Riley equation: newer perspective. Int. J. Dynam. Control 12, 85–97 (2024). https://doi.org/10.1007/s40435-023-01268-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01268-5

Keywords

Navigation