Skip to main content
Log in

Vibration analysis of small-scale piezoelectric plates in contact with fluid

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this article, according to the application of vibration analysis of small-scale piezoelectric plates in the design and development of modern electromechanical systems, for the first time, the vibrations of a small-scale piezoelectric plate in contact with a moving viscous fluid have been modeled. In order to consider the effects of small scales on the vibration behavior of the system, the theories of non-local elasticity and surface energy have been used simultaneously. The interaction between the fluid and the small-scale piezoelectric plate has been modeled using the Navier–Stokes equations. the effect of fluid parameters and plate geometry as well as applied voltage on the natural frequencies of small-scale piezoelectric plate was studied. The results presented in this research for the design of smart devices. Also, it is very useful to predict the voltage required for the vibration of fluid-coupled piezoelectric plates for the desired frequency of the designer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen C, Sharafi A, Sun JQ (2020) A high density piezoelectric energy harvesting device from highway traffic–Design analysis and laboratory validation. Appl Energy 269:115073

    Article  Google Scholar 

  2. Touairi S, Mabrouki M (2022) Chaotic dynamics applied to piezoelectric harvester energy prediction with time delay. Int J Dyn Control 10:699–720

    Article  Google Scholar 

  3. Gonçalves A, Almeida A, Moura ED, Souto CDR, Ries A (2021) Active vibration control in a two degrees of freedom structure using piezoelectric transducers associated with negative capacitance shunt circuits. Int J Dyn Control 9:71–84

    Article  Google Scholar 

  4. Surmenev RA, Orlova T, Chernozem RV, Ivanova AA, Bartasyte A, Mathur S, Surmeneva MA (2019) Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62:475–506

    Article  Google Scholar 

  5. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  Google Scholar 

  6. Gurtin ME, Ian Murdoch A (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440

    Article  Google Scholar 

  7. Liu C et al (2013) Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct 106:167–174

    Article  Google Scholar 

  8. Eltaher MA et al (2019) Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity. Waves Random Complex Media 29(2):264–280

    Article  MathSciNet  Google Scholar 

  9. Liu C et al (2018) Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory. Mech Adv Mater Struct 25(15–16):1252–1264

    Article  Google Scholar 

  10. Farokhi H, Ghayesh MH (2016) Nonlinear coupled dynamics of shear deformable microbeams. Int J Dyn Control 4:492–503

    Article  MathSciNet  Google Scholar 

  11. Ma LH et al (2018) Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int J Struct Stab Dyn 18(04):1850060

    Article  MathSciNet  Google Scholar 

  12. Asemi SR, Farajpour A (2014) Vibration characteristics of double-piezoelectric-nanoplate-systems. Micro Nano Lett 9(4):280–285

    Article  Google Scholar 

  13. Farajpour MR et al (2016) Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory. Micro Nano Lett 11(6):302–307

    Article  Google Scholar 

  14. Yan Z, Jiang L (2012) Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc R Soc A Math Phys Eng Sci 468(2147):3458–3475

    MathSciNet  Google Scholar 

  15. GhorbanpourArani A, Kolahchi R, Mortazavi SA (2014) Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems. Int J Mech Mater Des 10(2):179–191

    Article  Google Scholar 

  16. Jandaghian AA, Rahmani O (2016) An analytical solution for free vibration of piezoelectric nanobeams based on a nonlocal elasticity theory. J Mech 32(2):143–151

    Article  Google Scholar 

  17. Jandaghian AA, Rahmani O (2016) Vibration analysis of functionally graded piezoelectric nanoscale plates by nonlocal elasticity theory: An analytical solution. Superlattices Microstruct 100:57–75

    Article  Google Scholar 

  18. Li YS, Cai ZY, Shi SY (2014) Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos Struct 111:522–529

    Article  Google Scholar 

  19. Zang J et al (2014) Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Phys E Low-dimens Syst Nanostruct 63:147–150

    Article  Google Scholar 

  20. Khorshidi K et al (2021) A comprehensive nonlocal surface-piezoelectricity model for thermal and vibration analyses of piezoelectric nanoplates.". Compos Struct 263:113654

    Article  Google Scholar 

  21. Ghayesh MH, Farajpour A (2018) Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. Int J Eng Sci 129:84–95

    Article  MathSciNet  Google Scholar 

  22. Ghayesh MH, Farajpour A (2020) Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects. Mech Adv Mater Struct 27(5):373–382

    Article  Google Scholar 

  23. Farajpour A, Ghayesh MH, Farokhi H (2019) Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes. Int J Mech Sci 150:510–525

    Article  Google Scholar 

  24. Ghayesh MH, Farajpour A, Farokhi H (2020) Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory. Commun Nonlinear Sci Numer Simul 83:105090

    Article  MathSciNet  Google Scholar 

  25. Ghayesh MH, Farokhi H, Farajpour A (2019) Chaos in fluid-conveying NSGT nanotubes with geometric imperfections. Appl Math Model 74:708–730

    Article  MathSciNet  Google Scholar 

  26. Ong OZS, Yee K, Farajpour A, Ghayesh MH, Farokhi H (2019) Global nonlocal viscoelastic dynamics of pulsatile fluid-conveying imperfect nanotubes. Eur Phys J Plus 134(11):549

    Article  Google Scholar 

  27. Ghayesh MH, Farokhi H, Farajpour A (2019) A coupled longitudinal-transverse nonlinear NSGT model for CNTs incorporating internal energy loss. Eur Phys J Plus 134:1–15

    Article  Google Scholar 

  28. Gholipour A, Ghayesh MH (2020) A coupled nonlinear nonlocal strain gradient theory for functionally graded Timoshenko nanobeams. Microsyst Technol 26:2053–2066

    Article  Google Scholar 

  29. Gholipour A, Ghayesh MH (2020) Nonlinear coupled mechanics of functionally graded nanobeams. Int J Eng Sci 150:103221

    Article  MathSciNet  Google Scholar 

  30. Gholipour A, Ghayesh MH, Hussain S (2022) A continuum viscoelastic model of Timoshenko NSGT nanobeams. Eng Comput 38:631–646

    Article  Google Scholar 

  31. Arpanahi RA, Mohammadi B, Ahmadian MT, Hashemi SH (2023) Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid. Int J Dyn Control. https://doi.org/10.1007/s40435-023-01166-w

    Article  MathSciNet  Google Scholar 

  32. Matin MR, Mirdamadi HR, Ghayour M (2013) Effects of nonlocal elasticity and slip condition on vibration of nano-plate coupled with fluid flow. Phys E Low Dimen Syst Nanostruct 48:85–95

    Article  Google Scholar 

  33. Drissi M, Mansouri M, Mesmoudi S (2022) Fluid–structure interaction with the spectral method: application to a cylindrical tube subjected to transverse flow. Int J Dyn Control 11:995–1001

    Article  MathSciNet  Google Scholar 

  34. Hosseini-Hashemi S et al (2019) Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity. Eur J Mech A Solids 74:440–448

    Article  MathSciNet  Google Scholar 

  35. Arpanahi RA et al (2019) Nonlocal surface energy effect on free vibration behavior of nanoplates submerged in incompressible fluid. Thin-Walled Structures 143:106212

    Article  Google Scholar 

  36. Khorshidi K, Karimi M (2019) Analytical modeling for vibrating piezoelectric nanoplates in interaction with inviscid fluid using various modified plate theories. Ocean Eng 181:267–280

    Article  Google Scholar 

  37. Farajpour A, Farokhi H, Ghayesh MH, Hussain S (2018) Nonlinear mechanics of nanotubes conveying fluid. Int J Eng Sci 133:132–143

    Article  MathSciNet  Google Scholar 

  38. Liao C-Y, Ma C-C (2016) Vibration characteristics of rectangular plate in compressible inviscid fluid. J Sound Vib 362:228–251

    Article  Google Scholar 

  39. Arpanahi RA, Eskandari A, Hosseini-Hashemi S, Taherkhani M, Hashemi SH (2023) Surface energy effect on free vibration characteristics of nano-plate submerged in viscous fluid. J Vibr Eng Technol. https://doi.org/10.1007/s42417-022-00828-x

    Article  Google Scholar 

  40. Yan Z, Jiang L (2012) Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. J Phys D Appl Phys 45(25):255401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Hosseini Hashemi.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpanahi, R.A., Mohammadi, B., Ahmadian, M.T. et al. Vibration analysis of small-scale piezoelectric plates in contact with fluid. Int. J. Dynam. Control 12, 970–981 (2024). https://doi.org/10.1007/s40435-023-01231-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01231-4

Keywords

Navigation