Skip to main content
Log in

Reduced-order observer-based synchronization and output tracking in chain network of a class of nonlinear systems using contraction framework

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Synchronization of complex networks can easily be seen in nature around us and is an integral part of many real-world applications. Synchronization of a network is a phenomenon to achieve a common goal through cooperative interaction between systems at each node. The work presented here deals with the synchronization of a class of nonlinear systems connected in a chain network with each subsystem in network unidirectionally coupled through available output states only. To achieve synchronization, reduced-order observer-based scheme is utilized in contraction theory framework. System at a particular node is considered as an observer for the previous system which exponentially converges to actual system states using the proposed observer structure, ultimately leading to synchronization of overall network. The synchronizing gains for observer-based approach are obtained indirectly with proper selection of virtual system. An application of proposed synchronization procedure is further used for output tracking problem for the network. Representative numerical validation is shown further for chain network of chaotic Chua systems as an example. Simulation results justify the efficacy of the proposed synchronization as well as the combined output tracking scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pecora LM, Carroll TL (1999) Master stability functions for synchronized coupled systems. Int J Bifurc Chaos 9(12):2315–2320

    Article  Google Scholar 

  2. Li Z, Chen G (2006) Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans Circuits Syst II Express Briefs 53(1):28–33

    Article  Google Scholar 

  3. Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34(6):683–696

    Article  MathSciNet  MATH  Google Scholar 

  4. Di Bernardo M, Fiore D, Russo G, Scafuti F (2016) Convergence, consensus and synchronization of complex networks via contraction theory. Complex Syst Netw 73:313–339

    Article  MathSciNet  Google Scholar 

  5. Angeli D (2002) A Lyapunov approach to incremental stability properties. IEEE Trans Autom Control 47(3):410–421

    Article  MathSciNet  MATH  Google Scholar 

  6. Fromion V, Scorletti G, Ferreres G (1999) Nonlinear performance of a PI controlled missile: an explanation. Int J Robust Nonlinear Control IFAC Affil J 9(8):485–518

    Article  MathSciNet  MATH  Google Scholar 

  7. Zenfari S, Laabissi M, Achhab ME (2022) Proportional observer design for port Hamiltonian systems using the contraction analysis approach. Int J Dyn Control 10(2):403–408

    Article  MathSciNet  Google Scholar 

  8. Demidovich B (1967) Lectures on mathematical theory of stability. Nauka, Moscow

    MATH  Google Scholar 

  9. Slotine JJE, Wang W (2005) A study of synchronization and group cooperation using partial contraction theory. Cooperative control. Springer, Berlin, pp 207–228

    Google Scholar 

  10. Jouffroy JA (2003) simple extension of contraction theory to study incremental stability properties. In: 2003 European control conference (ECC), pp 1315–1321. IEEE

  11. Jouffryo J, Lottin J (2002) Integrator backstepping using contraction theory: a brief methodological note. IFAC Proc Vol 35(1):471–475

    Article  Google Scholar 

  12. Sharma B, Kar I (2010) Contraction theory-based recursive design of stabilising controller for a class of non-linear systems. IET Control Theory Appl 4(6):1005–1018

    Article  MathSciNet  Google Scholar 

  13. Anand P, Sharma BB (2020) Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction. Chaos Solitons Fractals 141:110331

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang W, Slotine JJE (2005) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92(1):38–53

    Article  MathSciNet  MATH  Google Scholar 

  15. Pham QC, Slotine JJ (2007) Stable concurrent synchronization in dynamic system networks. Neural Netw 20(1):62–77

    Article  MATH  Google Scholar 

  16. Sharma B, Kar I (2011) Observer-based synchronization scheme for a class of chaotic systems using contraction theory. Nonlinear Dyn 63(3):429–445

    Article  MathSciNet  Google Scholar 

  17. Sharma V, Sharma B, Nath R (2018) Unknown input reduced order observer based synchronization framework for class of nonlinear systems. Int J Dyn Control 6(3):1111–1125

    Article  MathSciNet  Google Scholar 

  18. Handa H, Sharma B (2019) Controller design scheme for stabilization and synchronization of a class of chaotic and hyperchaotic systems in uncertain environment using SMC approach. Int J Dyn Control 7(1):256–275

    Article  MathSciNet  Google Scholar 

  19. Anand P, Sharma B (2020) Synchronization of chain network of 4-D Lorenz-Stenflo systems using contraction based backstepping. In: 2020 2nd international conference on innovative mechanisms for industry applications (ICIMIA), pp 728–732. IEEE

  20. Chauhan Y, Sharma B, Ranjan RK (2021) Synchronization of nonlinear systems in chain network configuration with parametric uncertainty. In: 2021 IEEE 18th India council international conference (INDICON), pp 1–6. IEEE

  21. Li W, Zhang Z, Ge SS (2022) Dynamic gain reduced-order observer-based global adaptive neural-network tracking control for nonlinear time-delay systems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3178385

    Article  Google Scholar 

  22. di Bernardo M, Fiore D (2016) Switching control for incremental stabilization of nonlinear systems via contraction theory. In: 2016 European control conference (ECC), pp 2054–2059. IEEE

  23. Dey BS, Kar IN (2022) Switching control for Euler-Lagrange dynamics: an incremental stability approach. IFAC PapersOnLine 55(1):555–560

    Article  Google Scholar 

  24. Manchester IR, Slotine JJE (2014) Control contraction metrics and universal stabilizability. IFAC Proc Vol 47(3):8223–8228

    Article  Google Scholar 

  25. Manchester IR, Slotine JJE (2014) Output-feedback control of nonlinear systems using control contraction metrics and convex optimization. In: 2014 4th Australian control conference (AUCC), pp 215–220. IEEE

  26. Singh J, Jafari S, Khalaf A, Pham V, Roy B (2020) A modified chaotic oscillator with megastability and variable boosting and its synchronisation using contraction theory-based control which is better than backstepping and nonlinear active control. Pramana 94(1):1–14

    Article  Google Scholar 

  27. Xi R, Zhang H, Sun S, Wang Y (2022) Reduced-order high-gain observer (ROHGO)-based neural tracking control for random nonlinear systems with output delay. IEEE Trans Syst Man Cybern Syst 52(12):7507–7515

    Article  Google Scholar 

  28. Liu Y, Zhao J (2011) Generalized output synchronization of dynamical networks using output quasi-passivity. IEEE Trans Circuits Syst I Regul Pap 59(6):1290–1298

    Article  MathSciNet  MATH  Google Scholar 

  29. Forni F, Sepulchre R, Van Der Schaft A (2013) On differential passivity of physical systems. In: 52nd IEEE conference on decision and control, pp 6580–6585. IEEE

  30. Ranjan RK, Sharma BB, Chauhan Y (2021) Stabilization of a class of chaotic systems with uncertainty using output feedback control methodology. In: 2021 IEEE 6th international conference on computing, communication and automation (ICCCA), pp 533–538. IEEE

  31. Hao Z, Xing-yuan W, Xiao-hui L (2016) Synchronization of complex-valued neural network with sliding mode control. J Franklin Inst 353(2):345–358

    Article  MathSciNet  MATH  Google Scholar 

  32. Musmade B, Khandekar A, Patre B (2017) Sliding mode control design for robust tracking of open loop stable processes with experimental application. Int J Dyn Control 5(4):1201–1210

    Article  MathSciNet  Google Scholar 

  33. Zhang H, Zeng Z (2019) Synchronization of nonidentical neural networks with unknown parameters and diffusion effects via robust adaptive control techniques. IEEE Trans Cybern 51(2):660–672

    Article  Google Scholar 

  34. Pallav, Handa H (2021) Active control synchronization of similar and dissimilar chaotic systems. In: 2021 innovations in power and advanced computing technologies (i-PACT), pp 1–6

  35. Yadav VK, Agrawal S, Srivastava M, Das S (2017) Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method. Int J Dyn Control 5(2):259–268

    Article  MathSciNet  Google Scholar 

  36. Pallav, Handa H (2022) Simple synchronization scheme for a class of nonlinear chaotic systems using a single input control. IETE J Res 1–14

  37. Sadeghpour M, Khodabakhsh M, Salarieh H (2012) Intelligent control of chaos using linear feedback controller and neural network identifier. Communications in Nonlinear Science and Numerical Simulation. 17(12):4731–4739

    Article  MATH  Google Scholar 

  38. Shao K, Guo H, Han F (2020) Finite-time projective synchronization of fractional-order chaotic systems via soft variable structure control. J Mech Sci Technol 34(1):369–376

    Article  Google Scholar 

  39. Bora RM, Sharma BB (2022) LMI based adaptive robust control scheme for reduced order synchronization (ROS) for a class of chaotic systems. IFAC PapersOnLine 55(1):253–258

    Article  Google Scholar 

  40. Zhang J, Han Z, Zhu F, Zhang W (2014) Further results on adaptive full-order and reduced-order observers for Lur’e differential inclusions. Commun Nonlinear Sci Numer Simul 19(5):1582–1590

    Article  MathSciNet  MATH  Google Scholar 

  41. Martinez-Fuentes O, Martínez-Guerra R (2019) A high-gain observer with Mittag-Leffler rate of convergence for a class of nonlinear fractional-order systems. Commun Nonlinear Sci Numer Simul 79:104909

    Article  MathSciNet  MATH  Google Scholar 

  42. Anand P, Sharma BB (2022) Generalized finite-time synchronization scheme for a class of nonlinear systems using backstepping like control strategy. Int J Dyn Control. https://doi.org/10.1007/s40435-022-00948-y

    Article  Google Scholar 

  43. Nazari M, Butcher EA, Anthony W (2017) Earth-Moon L1 libration point orbit continuous stationkeeping control using time-varying LQR and backstepping. Int J Dyn Control 5(4):1089–1102

    Article  MathSciNet  Google Scholar 

  44. Martínez-Guerra R, Cruz-Victoria J, Gonzalez-Galan R, Aguilar-Lopez R (2006) A new reduced-order observer design for the synchronization of Lorenz systems. Chaos Solitons Fractals 28(2):511–517

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang T, Zhang P, Yu S (2017) Consensus of linear multi-agent systems via reduced-order observer. Neurocomputing 240:200–208

    Article  Google Scholar 

  46. Miyamoto K, She J, Nakano S, Sato D, Chen Y (2022) Active structural control of base-isolated building using equivalent-input-disturbance approach with reduced-order state observer. J Dyn Syst Meas Control 144(9):091006

    Article  Google Scholar 

  47. Wang Q, Hu J, Wu Y, Zhao Y (2023) Output synchronization of wide-area heterogeneous multi-agent systems over intermittent clustered networks. Inf Sci 619:263–275

    Article  Google Scholar 

  48. Gao D, Zhou L, Pan C, Liao C (2021) Generalized-reduced-order-extended-state-observer-based adaptive repetitive control for brushless DC motor. In: 2021 IEEE 10th data driven control and learning systems conference (DDCLS), pp 1528–1533. IEEE

  49. Yi B, Wang R, Manchester IR (2021) Reduced-order observers for nonlinear systems via contraction analysis and convex optimization. In: 2021 American control conference (ACC), pp 411–416. IEEE

  50. Zhang Z, Shao H, Wang Z, Shen H (2012) Reduced-order observer design for the synchronization of the generalized Lorenz chaotic systems. Appl Math Comput 218(14):7614–7621

    MathSciNet  MATH  Google Scholar 

  51. Zhu F (2008) Full-order and reduced-order observer-based synchronization for chaotic systems with unknown disturbances and parameters. Phys Lett A 372(3):223–232

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

There is no funding source to report for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar Ranjan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R.K., Sharma, B.B. Reduced-order observer-based synchronization and output tracking in chain network of a class of nonlinear systems using contraction framework. Int. J. Dynam. Control 11, 2523–2537 (2023). https://doi.org/10.1007/s40435-023-01147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01147-z

Keywords

Navigation