Skip to main content
Log in

Adaptive control for manipulators with model uncertainty and input disturbance

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This article proposes a simple method to design a linear adaptive controller for output tracking of uncertain robotic manipulators with input disturbance, in which their original mathematical models are not used. All model uncertainties and matched disturbance affecting to the robot behavior will be firstly summarized as the total matched disturbance belonging to a double integral system. Then, by using a proposed linear disturbance estimator, this lumped disturbance will be estimated and eliminated from the double integrator system. It means that based on this disturbance elimination, all robot manipulators would be consistently converted to a double integral system with bounded input disturbance. After all, the required output tracking controller will be designed for the input-disturbed double integrator system. The effectiveness of the proposed method is theoretically authenticated and confirmed by illustration examples. Moreover, the proposed controller is also compared to an existing adaptive controller for the planar robot through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material, Code availability

Not applicable.

References

  1. Fu K, Gonzalez R, Lee C (1987) Robotics. McGraw-Hill, New York

    Google Scholar 

  2. Lewis FL, Dawson DM, Abdallah CT (2004) Robot manipulator control theory and practice. Marcel Dekker Inc., New York

    Google Scholar 

  3. Spong W, Hutchinson S, Vidyasagar M (2006) Robot modelling and control. Wiley, New York

    Google Scholar 

  4. Fenga Y, Yub X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38:2159–2167

    Article  MathSciNet  Google Scholar 

  5. Feng Y, Zhou M, Yu X, Han F (2019) Full-order sliding-mode control of rigid robotic manipulators. Asian J Control 21:1228–1236

    Article  MathSciNet  MATH  Google Scholar 

  6. Sharma NK, Janardhanan S (2019) Discrete-time higher-order sliding mode control of systems with unmatched uncertainty. Int J Robust Nonlinear Control 29:135–152

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma Z, Sun G (2018) Dual terminal sliding mode control design for rigid robotic manipulator. J Franklin Inst 355(18):9127–9149

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhen S, Huang K, Sun H, Zhao H, Chen YH (2015) Optimal robust control for rigid serial manipulators: A fuzzy approach. Asian J Control 17:2329–2344

    Article  MathSciNet  MATH  Google Scholar 

  9. Bascetta L, Rocco P (2010) Revising the robust-control design for rigid robot manipulators. IEEE Trans Robot 26(1):180–187

    Article  Google Scholar 

  10. Chien CJ, Tayebi A (2008) Further results on adaptive iterative learning control of robot manipulators. Automatica 44(3):830–837

    Article  MathSciNet  MATH  Google Scholar 

  11. Tayebi A (2004) Adaptive iterative learning control for robot manipulators. Automatica 40(7):1195–1203

    Article  MathSciNet  MATH  Google Scholar 

  12. Lyu W, Zhai D-H, Xiong Y, Xia Y (2021) Predefined performance adaptive control of robotic manipulators with dynamic uncertainties and input saturation constraints. J Franklin Inst 358(14):7142–7169

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen KY (2018) Robust optimal adaptive sliding mode control with the disturbance observer for a manipulator robot system. Int J Control Autom Syst 16:1701–1715

    Article  Google Scholar 

  14. Rahmani M, Komijani H, Rahman MH (2020) New sliding mode control of 2-DOF robot manipulator based on extended grey wolf optimizer. Int J Control Autom Syst 18:1572–1580

    Article  Google Scholar 

  15. Yen VT, Nan WY, Cuong CP et al (2017) Robust adaptive sliding mode control for industrial robot manipulator using fuzzy wavelet neural networks. Int J Control Autom Syst 15:2930–2941

    Article  Google Scholar 

  16. Van M, Mavrovouniotis M, Ge SS (2019) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cyber Syst 49(7):1448–1458

    Article  Google Scholar 

  17. Mobayen S, Mofid O, Din SU, Bartoszewicz A (2021) Finite-time tracking controller design of perturbed robotic manipulator based on adaptive second-order sliding mode control method. IEEE Access 9:71159–71169

    Article  Google Scholar 

  18. Shojaei K, Kazemy A, Chatraei A (2021) An observer-based neural adaptive \(PID^2\) controller for robot manipulators including motor dynamics with a prescribed performance. IEEE/ASME Trans Mechtron 26(3):1689–1699

    Article  Google Scholar 

  19. Han SI, Lee JM (2015) Decentralized neural network control for guaranteed tracking error constraint of a robot manipulator. Int J Control Autom Syst 13:906–915

    Article  Google Scholar 

  20. Nohooji HR, Howard I, Cui L (2018) Neural network adaptive control design for robot manipulators under velocity constraints. J Franklin Inst 355(2):693–713

    Article  MathSciNet  MATH  Google Scholar 

  21. Nohooji HR (2020) Constrained neural adaptive PID control for robot manipulators. J Franklin Inst 357(7):3907–3923

    Article  MathSciNet  MATH  Google Scholar 

  22. You X et al (2017) Model-free control for soft manipulators based on reinforcement learning. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) 2017, pp 2909–2915

  23. Saleki A, Fateh MM (2020) Model-free control of electrically driven robot manipulators using an extended state observer. Comput Elect Eng, 87

  24. Bechlioulis CP, Liarokapis MV, Kyriakopoulos KJ (2014) Robust model free control of robotic manipulators with prescribed transient and steady state performance. In: IEEE/RSJ international conference on intelligent robots and systems 2014, pp 41–46

  25. Safaei A, Koo YC, Mahyuddin MN (2017) Adaptive model-free control for robotic manipulators. In: IEEE international symposium on robotics and intelligent sensors (IRIS) 2017, pp. 7–12

  26. Nguyen PD, Nguyen NH (2021) An intelligent parameter determination approach in iterative learning control. Eur J Control 61:91–100

    Article  MathSciNet  MATH  Google Scholar 

  27. Bouakrif F, Boukhetala D, Boudjema F (2013) Velocity observer-based iterative learning control for robot manipulators. Int J Syst Sci 44(2):214–222

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen H, Xing G, Sun H, Wang H (2013) Indirect iterative learning control for robot manipulator with non-Gaussian disturbances. IET Control Theory Appl 7:2090–2102

    Article  MathSciNet  Google Scholar 

  29. Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710

    Article  Google Scholar 

  30. Wu K, Zhang Z, Sun C (2018) Disturbance observer based output feedback control of non-linear cascaded systems with external disturbance. IET Control Theory Appl 12(6):738–744

    Article  MathSciNet  Google Scholar 

  31. Yang J, Li S, Chen W-H (2012) Nonlinear disturbance observer based control for multi-input multi-output nonlinear systems subject to mismatching condition. Int J Control 8(85):1071–1082

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen M, Ge SS (2015) Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans Ind Electron 62(12):7706–7716

    Article  Google Scholar 

  33. Xu B, Shou Y, Luo J, Pu H, Shi Z (2019) Neural learning control of strict feedback systems using disturbance observer. IEEE Trans Neural Netw Learn Syst 30(5):1296–1307

    Article  MathSciNet  Google Scholar 

  34. He W, Yan Z, Sun C, Chen Y (2017) Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans Cybern 47(10):3452–3465

    Article  Google Scholar 

  35. Tran KG, Nguyen NH, Nguyen PD (2020) Observer based controllers for two-wheeled inverted robots with unknown input disturbance and model uncertainty. J Control Sci Eng 2020:1-12

    Article  MathSciNet  MATH  Google Scholar 

  36. Zheng X, Yang X (2020) Command filter and universal approximator based backstepping control design for strict-feedback nonlinear systems with uncertainty. IEEE Trans Autom Control 65(3):1310–1317

    Article  MathSciNet  MATH  Google Scholar 

  37. Khalil HK (2014) Nonlinear systems. Pearson, New York

    Google Scholar 

  38. Liu J, Wang X (2012) Advanced sliding mode control for mechanical systems. Springer, Beijing

    MATH  Google Scholar 

  39. Nguyen PD, Nguyen NH (2022) Adaptive control for nonlinear non-autonomous systems with unknown input disturbance. Int J Control 32(17):9160–9173

    MathSciNet  Google Scholar 

  40. Iqbal A, Athar SM (1995) Dynamic modeling and simulation for control of a cylindrical robotic manipulator. Project report, Informatics complex ICCC, TR-ICCC-21, Islamabad

  41. Arqub OA, Al-Smadi M (2020) Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput 24:12501–12522

    Article  MATH  Google Scholar 

  42. Arqub OA, AL-Smadi M, Momani S et al (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283–3302

    Article  MATH  Google Scholar 

  43. Arqub OA, Al-Smadi M, Momani S et al (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21:7191–7206

    Article  MATH  Google Scholar 

  44. Abu Arqub O (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Applic 28:1591–1610

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Training of Vietnam (MOET, VN) under the Grant B2021-BKA-10.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Phuoc D. Nguyen, Ha T. Nguyen; Methodology: Phuoc D. Nguyen, Nam H. Nguyen; Formal analysis and investigation: Ha T. Nguyen, Nam H. Nguyen; Writing - original draft preparation: Phuoc D. Nguyen, Nam H. Nguyen; Writing - review and editing: Nam H. Nguyen, Ha T. Nguyen; Funding acquisition: Ha T. Nguyen; Supervision: Phuoc D. Nguyen.

Corresponding author

Correspondence to Ha T. Nguyen.

Ethics declarations

Statements and Declarations

No potential conflict of interest was reported by the author(s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P.D., Nguyen, N.H. & Nguyen, H.T. Adaptive control for manipulators with model uncertainty and input disturbance. Int. J. Dynam. Control 11, 2285–2294 (2023). https://doi.org/10.1007/s40435-023-01115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01115-7

Keywords

Navigation