Skip to main content
Log in

Attitude and position control with minimum snap trajectory planning for quadrotor UAV

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, the Quadrotor attitude control and the problem of trajectory tracking has been addressed with minimum snap trajectory generation algorithm. The control system has been designed using proportional plus derivative (PD) control with two feedback loops. The attitude and position controllers have been designed in inner and outer loop, respectively. The designed controller is first tested for helical, infinity shaped trajectory and then for a minimum snap trajectory, which is generated from specified waypoints in three-dimensional space. The Euler–Lagrange equation has been used to obtain minimum snap trajectory condition, which results in a seventh order polynomial. The coefficients of the polynomials are obtained by applying enough constraints on velocity, acceleration, and higher derivatives. The trajectory generation with designed controller has been implemented in MATLAB environment. The controller shows efficient performance and good trajectory tracking for all the trajectories with minimum tracking error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15

Similar content being viewed by others

Data availability

The data, material and Code used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PID:

Proportional integral derivative

SMC:

Sliding mode control

UAV:

Unmanned aerial vehicle

LQR:

Linear quadratic regulator

VTOL:

Vertical take-off and landing

MPC:

Model predictive control

MRAC:

Model reference adaptive control

EKF:

Extended Kalman filter

ESO:

Extended state observer

References

  1. Yu G, Cabecinhas D, Cunha R, Silvestre C (2019) Quadrotor trajectory generation and tracking for aggressive maneuvers with attitude constraints. IFAC-PapersOnLine 52:55–60. https://doi.org/10.1016/j.ifacol.2019.11.069

    Article  Google Scholar 

  2. Hehn M, D’Andrea R (2011) Quadrocopter trajectory generation and control. IFAC Proc 44:1485–1491. https://doi.org/10.3182/20110828-6-IT-1002.03178

    Article  Google Scholar 

  3. Xi L, Peng Z, Jiao L, Chen BM (2021) Smooth quadrotor trajectory generation for tracking a moving target in cluttered environments. Sci China Inf Sci 64:1–16. https://doi.org/10.1007/s11432-020-3056-5

    Article  MathSciNet  Google Scholar 

  4. Richter C, Bry A, Roy N (2016) Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. Springer Tracts Adv Robot 114:649–666. https://doi.org/10.1007/978-3-319-28872-7_37

    Article  Google Scholar 

  5. Hu B, Mishra S (2019) Time-optimal trajectory generation for landing a quadrotor onto a moving platform. IEEE/ASME Trans Mechatronics 24:585–596. https://doi.org/10.1109/TMECH.2019.2896075

    Article  Google Scholar 

  6. Yu J, Cai Z, Wang Y (2017) The minimum jerk trajectory generation of a quadrotor based on the differential flatness. In: CGNCC 2016 - 2016 IEEE Chinese Guid Navig Control Conf, pp 1061–1066. https://doi.org/10.1109/CGNCC.2016.7828934

  7. Mellinger D, Michael N, Kumar V (2012) Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int J Robot Res 31:664–674. https://doi.org/10.1177/0278364911434236

    Article  Google Scholar 

  8. Zulu A, John S (2014) A review of control algorithms for autonomous quadrotors. Open J Appl Sci 04:547–556. https://doi.org/10.4236/ojapps.2014.414053

    Article  Google Scholar 

  9. Li J, Li Y (2011) Dynamic analysis and PID control for a quadrotor. IEEE Int Conf Mechatron Autom ICMA 2011:573–578. https://doi.org/10.1109/ICMA.2011.5985724

    Article  Google Scholar 

  10. Bolandi H, Rezaei M, Mohsenipour R et al (2013) Attitude control of a quadrotor with optimized PID controller. Intell Control Autom 4:335–342. https://doi.org/10.4236/ICA.2013.43039

    Article  Google Scholar 

  11. Martins L, Cardeira C, Oliveira P (2019) Linear quadratic regulator for trajectory tracking of a quadrotor. IFAC-PapersOnLine 52:176–181. https://doi.org/10.1016/j.ifacol.2019.11.195

    Article  Google Scholar 

  12. Nonami K, Kendoul F, Suzuki S et al (2010) Autonomous control of a mini quadrotor vehicle using LQG controllers. Autonomous flying robots: unmanned aerial vehicles and micro aerial vehicles. Springer, pp 61–76

    Chapter  Google Scholar 

  13. Voos H (2009) Nonlinear control of a quadrotor micro-uav using feedback-linearization. In IEEE 2009 Int Conf Mechatronics, ICM 2009. https://doi.org/10.1109/ICMECH.2009.4957154

  14. Shang B, Liu J, Zhao T, Chen YQ (2016) Fractional order robust visual servoing control of a quadrotor UAV with larger sampling period. Int Conf Unmanned Aircr Syst ICUAS 2016:1228–1234. https://doi.org/10.1109/ICUAS.2016.7502645

    Article  Google Scholar 

  15. Rios H, Falcon R, Gonzalez OA, Dzul A (2019) Continuous sliding-mode control strategies for quadrotor robust tracking: real-time application. IEEE Trans Ind Electron 66:1264–1272. https://doi.org/10.1109/TIE.2018.2831191

    Article  Google Scholar 

  16. Prempain E, Postlethwaite I (2005) Static H∞ loop shaping control of a fly-by-wire helicopter. Automatica 41:1517–1528. https://doi.org/10.1016/J.AUTOMATICA.2005.04.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim HS, Park JB, Joo YH (2017) A systematic approach to fuzzy-model-based robust H∞ control design for a quadrotor UAV under imperfect premise matching. Int J Fuzzy Syst 19:1227–1237. https://doi.org/10.1007/s40815-016-0233-6

    Article  MathSciNet  Google Scholar 

  18. Song G, Tao G (2020) A partial-state feedback model reference adaptive control scheme. IEEE Trans Automat Contr 65:44–57. https://doi.org/10.1109/TAC.2019.2906457

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiao J, Liu Z, Zhang Y (2018) Gain Scheduling based PID control approaches for path tracking and fault tolerant control of a Quad-rotor UAV. Int J Mech Eng Robot Res 7:401–408. https://doi.org/10.18178/ijmerr.7.4.401-408

    Article  Google Scholar 

  20. Milhim AB, Zhang Y, Rabbath CA (2010) Gain scheduling based PID controller for fault tolerant control of a quad-rotor UAV. AIAA Infotech Aerosp 2010:1–13. https://doi.org/10.2514/6.2010-3530

    Article  Google Scholar 

  21. Singh BK, Kumar A (2022) Model predictive control using LPV approach for trajectory tracking of quadrotor UAV with external disturbances. Aircr Eng Aerosp Technol. https://doi.org/10.1108/AEAT-12-2021-0368

    Article  Google Scholar 

  22. Abdolhosseini M, Zhang YM, Rabbath CA (2013) An efficient model predictive control scheme for an unmanned quadrotor helicopter. J Intell Robot Syst Theory Appl 70:27–38. https://doi.org/10.1007/s10846-012-9724-3

    Article  Google Scholar 

  23. Dulf EH, Timis DD, Szekely L, Miclea LC (2019) Adaptive fractional order control applied to a multi-rotor system. In: Proceedings of the 2019 22nd int conf control syst comput sci CSCS 2019 696–699. https://doi.org/10.1109/CSCS.2019.00124

  24. Sadigh RSM (2019) Optimizing PID controller coefficients using fractional order based on intelligent optimization algorithms for quadcopter. Proc 6th RSI int conf robot mechatronics. IcRoM 2018:146–151. https://doi.org/10.1109/ICROM.2018.8657616

    Article  Google Scholar 

  25. Ryan T, Kim HJ (2013) LMI-based gain synthesis for simple robust quadrotor control. IEEE Trans Autom Sci Eng 10:1173–1178. https://doi.org/10.1109/TASE.2013.2259156

    Article  Google Scholar 

  26. Jiang F, Pourpanah F, Hao Q (2020) Design, implementation, and evaluation of a neural-network-based quadcopter UAV system. IEEE Trans Ind Electron 67:2076–2085. https://doi.org/10.1109/TIE.2019.2905808

    Article  Google Scholar 

  27. Shirzadeh M, Amirkhani A, Jalali A, Mosavi MR (2015) An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target. ISA Trans 59:290–302. https://doi.org/10.1016/j.isatra.2015.10.011

    Article  Google Scholar 

  28. Cervantes J, Yu W, Salazar S, Chairez I (2017) Takagi-sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems. IEEE Trans Fuzzy Syst 25:1601–1615. https://doi.org/10.1109/TFUZZ.2016.2612697

    Article  Google Scholar 

  29. Torres F, Rabhi A, Lara D et al (2016) Fuzzy state feedback for attitude stabilization of quadrotor. Int J Adv Robot Syst 13:2. https://doi.org/10.5772/61934

    Article  Google Scholar 

  30. González JAC, Salas-Peña O, De León-Morales J (2021) Observer-based super twisting design: a comparative study on quadrotor altitude control. ISA Trans 109:307–314. https://doi.org/10.1016/j.isatra.2020.10.026

    Article  Google Scholar 

  31. Gai W, Liu J, Qu C, Zhang J (2018) Trajectory tracking control for a quadrotor UAV via extended state observer. Syst Sci Control Eng 6:126–135. https://doi.org/10.1080/21642583.2018.1539931

    Article  Google Scholar 

  32. Shao X, Liu J, Cao H et al (2018) Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int J Robust Nonlinear Control 28:2700–2719. https://doi.org/10.1002/rnc.4044

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao K, Zhang J, Ma D, Xia Y (2020) Composite disturbance rejection attitude control for quadrotor with unknown disturbance. IEEE Trans Ind Electron 67:6894–6903. https://doi.org/10.1109/TIE.2019.2937065

    Article  Google Scholar 

  34. Zhang X, Wang Y, Zhu G et al (2021) Compound adaptive fuzzy quantized control for quadrotor and its experimental verification. IEEE Trans Cybern 51:1121–1133. https://doi.org/10.1109/TCYB.2020.2987811

    Article  Google Scholar 

  35. Cen R, Jiang T, Tang P (2021) Modified Gaussian process regression based adaptive control for quadrotors. Aerosp Sci Technol 110:106483. https://doi.org/10.1016/j.ast.2020.106483

    Article  Google Scholar 

  36. Nascimento RG, Fricke K, Viana FAC (2020) Quadcopter control optimization through machine learning. AIAA Scitech 2020 Forum 1 PartF https://doi.org/10.2514/6.2020-1148

  37. Michael N, Mellinger D, Lindsey Q, Kumar V (2010) Experimental evaluation of multirobot aerial control algorithms. IEEE Robot Autom Mag 17:56–65

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The first author conceptualized the proposed work and prepared the manuscript while the second author supervised the work and reviewed the manuscript to improve the quality.

Corresponding author

Correspondence to Brajesh Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.K., Kumar, A. Attitude and position control with minimum snap trajectory planning for quadrotor UAV. Int. J. Dynam. Control 11, 2342–2353 (2023). https://doi.org/10.1007/s40435-022-01111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-01111-3

Keywords

Navigation