Skip to main content
Log in

Formation control of nonholonomic wheeled mobile robots via fuzzy fractional-order integral sliding mode control

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a robust formation control scheme for a team of nonholonomic wheeled mobile robots. First, the formation kinematic controller is introduced according to the leader-following strategy, then by employing the dynamic model of the robots, a combination of fractional calculus theories and integral sliding mode control is adopted to provide a robust dynamic control laws for every follower robots to track the leader and accomplish the required formation pattern even in the presence of external disturbances and model uncertainties. Furthermore, the chattering phenomenon is mitigated using a fuzzy logic control. Then, by using the Lyapunov theory, the proposed control scheme’s convergence and stability are demonstrated. Finally, a comparative study is conducted to evaluate the performance of the suggested control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

Not applicable.

Data Availability

Not applicable.

References

  1. Nair RR, Karki H, Shukla A et al (2018) Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control. IEEE Syst J 13(1):1006–1017

    Article  Google Scholar 

  2. Dang AD, La HM, Nguyen T, et al (2019) Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force—based approach. Int J Adv Robotic Syst 16(3):1729881419847897

  3. Pan Z, Li D, Yang K et al (2019) Multi-robot obstacle avoidance based on the improved artificial potential field and PID adaptive tracking control algorithm. Robotica 37(11):1883–1903

    Article  Google Scholar 

  4. Balch T, Arkin RC (1998) Behavior-based formation control for multirobot teams. IEEE Trans Robot Autom 14(6):926–939

    Article  Google Scholar 

  5. Lawton JR, Beard RW, Young BJ (2003) A decentralized approach to formation maneuvers. IEEE Trans Robot Autom 19(6):933–941

    Article  Google Scholar 

  6. Xu D, Zhang X, Zhu Z, et al (2014) Behavior-based formation control of swarm robots. Mathematical Problems in Engineering 2014

  7. Lee G, Chwa D (2018) Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intel Serv Robot 11(1):127–138

    Article  Google Scholar 

  8. Hacene N, Mendil B (2021) Behavior-based autonomous navigation and formation control of mobile robots in unknown cluttered dynamic environments with dynamic target tracking. Int J Autom Comput 18(5):766–786

    Article  Google Scholar 

  9. Tan KH, Lewis MA (1996) Virtual structures for high-precision cooperative mobile robotic control. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems. IROS’96, IEEE, pp 132–139

  10. Chen L, Baoli M (2015) A nonlinear formation control of wheeled mobile robots with virtual structure approach. In: 2015 34th Chinese control conference (CCC), IEEE, pp 1080–1085

  11. Chen X, Huang F, Zhang Y et al (2020) A novel virtual-structure formation control design for mobile robots with obstacle avoidance. Appl Sci 10(17):5807

    Article  Google Scholar 

  12. Peng Z, Yang S, Wen G et al (2016) Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots. Neurocomputing 173:1485–1494

    Article  Google Scholar 

  13. Han SI (2018) Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems. IET Control Theory Appl 12(2):282–290

    Article  MathSciNet  Google Scholar 

  14. Wang Z, Wang L, Zhang H, et al (2019) Distributed formation control of nonholonomic wheeled mobile robots subject to longitudinal slippage constraints. IEEE Trans Syst Man Cybern: Syst

  15. Peng Z, Wen G, Rahmani A et al (2013) Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Robot Auton Syst 61(9):988–996

    Article  Google Scholar 

  16. Zhao Y, Zhang Y, Lee J (2019) Lyapunov and sliding mode based leader-follower formation control for multiple mobile robots with an augmented distance-angle strategy. Int J Control Autom Syst 17(5):1314–1321

    Article  Google Scholar 

  17. Liang X, Wang H, Liu YH et al (2017) Formation control of nonholonomic mobile robots without position and velocity measurements. IEEE Trans Robot 34(2):434–446

  18. Yang Z, Zhu S, Chen C et al (2020) Leader-follower formation control of nonholonomic mobile robots with bearing-only measurements. J Frankl Inst 357(3):1628–1643

    Article  MathSciNet  MATH  Google Scholar 

  19. Hirata-Acosta J, Pliego-Jiménez J, Cruz-Hernádez C et al (2021) Leader-follower formation control of wheeled mobile robots without attitude measurements. Appl Sci 11(12):5639

    Article  Google Scholar 

  20. Wu HM, Karkoub M, Hwang CL (2015) Mixed fuzzy sliding-mode tracking with backstepping formation control for multi-nonholonomic mobile robots subject to uncertainties. J Intell Robot Syst 79(1):73–86

    Article  Google Scholar 

  21. Qian D, Tong S, Guo J et al (2015) Leader-follower-based formation control of nonholonomic mobile robots with mismatched uncertainties via integral sliding mode. Proc Inst Mech Eng Part I: J Syst Control Eng 229(6):559–569

    Google Scholar 

  22. Asif M, Khan MJ, Memon AY (2017) Integral terminal sliding mode formation control of non-holonomic robots using leader follower approach. Robotica 35(7):1473–1487

    Article  Google Scholar 

  23. Chen CY, Li THS, Yeh YC et al (2009) Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2):156–166

    Article  Google Scholar 

  24. Xiao H, Li Z, Chen CP (2016) Formation control of leader-follower mobile robots’ systems using model predictive control based on neural-dynamic optimization. IEEE Trans Ind Electron 63(9):5752–5762

    Article  Google Scholar 

  25. Eren T (2012) Formation shape control based on bearing rigidity. Int J Control 85(9):1361–1379

    Article  MathSciNet  MATH  Google Scholar 

  26. Abdulwahhab OW, Abbas NH (2018) Design and stability analysis of a fractional order state feedback controller for trajectory tracking of a differential drive robot. Int J Control Autom Syst 16(6):2790–2800

    Article  Google Scholar 

  27. Cajo R, Guinaldo M, Fabregas E et al (2021) Distributed formation control for multiagent systems using a fractional-order proportional-integral structure. IEEE Trans Control Syst Technol 29(6):2738–2745

    Article  Google Scholar 

  28. Singhal K, Kumar V, Rana K (2022) Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy PID controller. J Frankl Inst

  29. Oldham K, Spanier J (1974) The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier, Amsterdam

    MATH  Google Scholar 

  30. Das S (2011) Functional Fractional calculus. Springer, Berlin

  31. Kowdiki KH, Barai RK, Bhattacharya S (2019) Autonomous leader-follower formation control of non-holonomic wheeled mobile robots by incremental path planning and sliding mode augmented tracking control. Int J Syst Control Commun 10(3):191–217

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this work in terms of programming (Damani), mathematical formulation (Damani,Benselama and Hedjar) and manuscript drafting and editing (Damani,Benselama and Hedjar).

Corresponding author

Correspondence to Allaeddine Yahia Damani.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damani, A.Y., Benselama, Z.A. & Hedjar, R. Formation control of nonholonomic wheeled mobile robots via fuzzy fractional-order integral sliding mode control. Int. J. Dynam. Control 11, 2273–2284 (2023). https://doi.org/10.1007/s40435-022-01109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-01109-x

Keywords

Navigation