Skip to main content
Log in

Secure audio signal encryption based on triple compound-combination synchronization of fractional-order dynamical systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In the recent past, information security has been a gradually fundamental problem. This paper proposed a new audio encryption algorithm based on a novel dynamical system with a fractional derivative that added immense security. The dynamical system with fractional derivative exhibits chaotic behavior for a wide range of fractional order and parameter values. Moreover, it is interesting that our system exhibits various coexisting attractors for the same set of parameter values and different initial conditions. Also, the system chaos is controlled about its stagnation point using the nonlinear feedback control technique. Further, adaptive sliding mode techniques and triple compound anti-synchronization schemes have been used to synchronize eight parallel systems in the presence of external disturbances. The results have been certified in the shape of plots by adopting numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jahanshahi H, Yousefpour A, Munoz-Pacheco JM, Kacar S, Pham VT, Alsaadi FE (2020) A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl Math Comput 383:125310

    MathSciNet  MATH  Google Scholar 

  2. Kumar V, Girdhar A (2021) A 2D logistic map and Lorenz-Rossler chaotic system based RGB image encryption approach. Multimed Tools Appl 80(3):3749

    Article  Google Scholar 

  3. Adhikari S, Karforma S (2021) A novel audio encryption method using Henon–Tent chaotic pseudo random number sequence. Int J Inf Technol 1–9

  4. El Hanouti I, El Fadili H (2021) Security analysis of an audio data encryption scheme based on key chaining and DNA encoding. Multimed Tools Appl 80(8):12077

    Article  Google Scholar 

  5. Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, CRC Press

  6. Sheu LJ (2011) A speech encryption using fractional chaotic systems. Nonlinear Dyn 65(1):103

    Article  MathSciNet  MATH  Google Scholar 

  7. Elshamy EM, El-Rabaie ESM, Faragallah OS, Elshakankiry OA, Abd El-Samie FE, El-Sayed HS, El-Zoghdy SF (2015) Efficient audio cryptosystem based on chaotic maps and double random phase encoding. Int J Speech Technol 18(4):619

    Article  Google Scholar 

  8. Wang X, Su Y (2019) An audio encryption algorithm based on DNA coding and chaotic system. IEEE Access 8:9260

    Article  Google Scholar 

  9. Grigorenko I, Grigorenko E (2003) Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett 91(3):034101

    Article  Google Scholar 

  10. Li C, Chen G (2004) Chaos and hyperchaos in the fractional-order Rössler equations. Phys A Statist Mech Appl 341:55

    Article  Google Scholar 

  11. Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Phys A Statist Mech Appl 341:55

    Article  Google Scholar 

  12. Deng W, Li C (2005) Chaos synchronization of the fractional Lü system. Physica A Statist Mech Appl 353:61

    Article  Google Scholar 

  13. Zhu H, Zhou S, Zhang J (2009) Chaos and synchronization of the fractional-order Chua’s system. Chaos Soliton Fract 39(4):1595

    Article  MATH  Google Scholar 

  14. Baleanu D, Jajarmi A, Sajjadi S, Mozyrska D (2019) A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdisciplin J Nonlinear Sci 29(8):083127

  15. Rajagopal K, Akgul A, Jafari S, Karthikeyan A, Cavusoglu U, Kacar S (2020) An exponential jerk system, its fractional-order form with dynamical analysis and engineering application. Soft Computing 24(10):7469

    Article  Google Scholar 

  16. Naik PA, Owolabi KM, Yavuz M, Zu J (2020) Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos, Solitons & Fractals 140:110272

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Khan, P. Muthukumar, Transient Chaos, Synchronization and Digital Image Enhancement Technique Based on a Novel 5D Fractional-Order Hyperchaotic Memristive System. Circuits, Systems, and Signal Processing pp. 1–24 (2021)

  18. A. Khan, N. Khan, A novel finite-time terminal observer of a fractional-order chaotic system with chaos entanglement function. Mathematical Methods in the Applied Sciences (2021)

  19. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198 (Elsevier, 1998)

  20. L. Debnath, Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences 2003 (2003)

  21. Koeller R (1984) Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics 51(2):299

    Article  MathSciNet  MATH  Google Scholar 

  22. O. Heaviside, Electromagnetic theory. (1894)

  23. R. Hilfer, Applications of Fractional Calculus in Physics. Edited by HILFER R. Published by World Scientific Publishing Co. Pte. Ltd.,. ISBN# 9789812817747 (2000)

  24. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Physical review letters 64(11):1196

    Article  MathSciNet  MATH  Google Scholar 

  25. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys. Rev. Lett. 64:821

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen G (1994) Optimal control of chaotic systems. International Journal of Bifurcation and Chaos 4:461

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen G, Dong X (1992) On feedback control of chaotic nonlinear dynamic systems. International Journal of Bifurcation and Chaos 2(02):407

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Qi, G. Zhao, Y. Song, in Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788), vol. 2 (IEEE, 2004), vol. 2, pp. 1284–1286

  29. Yang T, Yang LB, Yang CM (1997) Impulsive control of Lorenz system. Physica D: Nonlinear Phenomena 110(1–2):18

    Article  MathSciNet  MATH  Google Scholar 

  30. Njah A (2010) Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dynamics 61(1–2):1

    Article  MathSciNet  MATH  Google Scholar 

  31. C.S. Fang, Y.Y. Hou, in Control and Robotics Engineering (ICCRE), 2016 IEEE International Conference on (IEEE, 2016), pp. 1–4

  32. Khan A, Jahanzaib LS et al (2019) Synchronization on the adaptive sliding mode controller for fractional order complex chaotic systems with uncertainty and disturbances. International Journal of Dynamics and Control 7(4):1419

    Article  MathSciNet  Google Scholar 

  33. A. Khan, Synchronization of Non-integer Chaotic Systems with Uncertainties, Disturbances and Input Non-linearities. Nasreen, Kyungpook Mathematical Journal 61(2) (2021)

  34. W. Lin, Y. He, Complete synchronization of the noise-perturbed Chua’s circuits. Chaos: An Interdisciplinary Journal of Nonlinear Science 15(2), 023705 (2005)

  35. Vaidyanathan S (2015) Anti-synchronization of the generalized Lotka-Volterra three-species biological systems via adaptive control. International Journal of PharmTech Research 8(8):141

    Google Scholar 

  36. S. Vaidyanathan, S. Rasappan, in International Conference on Computer Science and Information Technology (Springer, 2011), pp. 585–593

  37. Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Physical Review Letters 82(15):3042

    Article  Google Scholar 

  38. Q. Wei, X.y. Wang, X.p. Hu, Hybrid function projective synchronization in complex dynamical networks. AIP Advances 4(2), 027128 (2014)

  39. Khan A (2021) Nasreen, A Comparative Study Between Two Different Adaptive Sliding Mode Control Techniques. International Journal of Applied and Computational Mathematics 7(4):1

    Article  Google Scholar 

  40. Khan A, Bhat MA (2017) Multiswitching compound antisynchronization of four chaotic systems. Mathematical Methods in the Applied Sciences 40(15):5654

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Sun, Y. Shen, G. Cui, Compound synchronization of four chaotic complex systems. Advances in Mathematical Physics 2015 (2015)

  42. J. Sun, Y. Shen, Q. Yin, C. Xu, Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos: An Interdisciplinary Journal of Nonlinear Science 23(1), 013140 (2013)

  43. Sun J, Wang Y, Wang Y, Cui G, Shen Y (2016) Compound-combination synchronization of five chaotic systems via nonlinear control. Optik 127(8):4136

    Article  Google Scholar 

  44. S. Bhalekar, V. Daftardar-Gejji, in Proceedings of the international conference on mathematical sciences in honor of Prof. AM Mathai (2011), pp. 3–5

  45. Ahmed E, El-Sayed A, El-Saka HA (2006) On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Physics Letters A 358(1):1

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Matignon, in Computational engineering in systems applications, vol. 2 (IMACS, IEEE-SMC Lille, France, 1996), vol. 2, pp. 963–968

  47. Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications 265(2):229

    Article  MathSciNet  MATH  Google Scholar 

  48. Tavazoei MS, Haeri M (2007) A necessary condition for double scroll attractor existence in fractional-order systems. Physics Letters A 367(1–2):102

    Article  MATH  Google Scholar 

  49. Morfu S, Nofiele B, Marquié P (2007) On the use of multistability for image processing. Physics Letters A 367(3):192

    Article  MATH  Google Scholar 

  50. P.S. Skardal, J.G. Restrepo, Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(4), 043126 (2014)

  51. Vidyasagar M (2002) Society for Industrial and Applied Mathematics. Pa, USA, Philadelphia

  52. Sun J, Shen Y, Zhang G, Xu C, Cui G (2013) Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dynamics 73(3):1211

    Article  MathSciNet  MATH  Google Scholar 

  53. Singh AK, Yadav VK, Das S (2017) Dual combination synchronization of the fractional order complex chaotic systems. Journal of Computational and Nonlinear Dynamics 12(1):011017

    Article  Google Scholar 

  54. Zerimeche H, Houmor T, Berkane A (2021) International Journal of Dynamics and Control 9(2):788

    Article  MathSciNet  Google Scholar 

  55. Sun J, Wu Y, Cui G, Wang Y (2017) Combination synchronization of different dimensions fractional-order non-autonomous chaotic systems using scaling matrix. Nonlinear Dynamics 88(3):1677

    Article  Google Scholar 

  56. Khan A, Khattar D, Prajapati N (2018) Adaptive multi switching combination synchronization of chaotic systems with unknown parameters. International Journal of Dynamics and Control 6(2):621

    Article  MathSciNet  Google Scholar 

  57. Ojo K, Njah A, Olusola O (2015) Generalized function projective combination-combination synchronization of chaos in third order chaotic systems. Chinese Journal of Physics 53(3):l1

    Google Scholar 

  58. K. Ojo, A. Njah, O. Olusola, Compound-combination synchronization of chaos in identical and different orders chaotic systems. Archives of Control Sciences 25(4) (2015)

Download references

Funding

Nasreen (19/06/2016(i)EU-V) is grateful to U.G.C. India, regarding the financing S.R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasreen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Data will be made available on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasreen, Muthukumar, P. Secure audio signal encryption based on triple compound-combination synchronization of fractional-order dynamical systems. Int. J. Dynam. Control 10, 2053–2071 (2022). https://doi.org/10.1007/s40435-022-00942-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00942-4

Keywords

Navigation