Skip to main content
Log in

Robustifying adaptive model predictive control for a one-link flexible manipulator using super-twisting integral sliding mode control

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Vibration depreciates positioning accuracy and productivity of flexible manipulators and make their modeling and/or controlling a very demanding task. In this paper, an Adaptive Model Predictive Control (AMPC) algorithm is detailed to actively damp a nonlinear one-link flexible manipulator while tracking its rigid body position. The derived controller involves in-loop linearization of the plant, around the actual state and control signal, to adapt the required model over the prediction horizon. The robustness of the proposed control strategy is improved using Super-Twisting Integral Sliding Mode Control (STISMC). The proposed controller compensates for the assumed matched uncertainties and external disturbances affecting the nominal plant, so the robustness is guaranteed. The effectiveness of the active vibration control is appraised via numerical simulation carried out using Matlab/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41(7):749–777

    Article  MathSciNet  MATH  Google Scholar 

  2. IFR Press Conference, 2020. 18 September Shanghai

  3. Sayahkarajy M, Mohamed Z, Mohd Faudzi AA (2016) Review of modelling and control of flexible-link manipulators. Proc Inst Mech Eng Part I J Syst Control Eng 230:861–873

    Google Scholar 

  4. Arkouli Z, Aivaliotis P, Makris S (2021) Towards accurate robot modelling of flexible robotic manipulators. Procedia CIRP 97:497–501

    Article  Google Scholar 

  5. Wang B, Lou J (2019) Coupling dynamic modelling and parameter identification of a flexible manipulator system with harmonic drive. Meas Control 52:122–130

    Article  Google Scholar 

  6. Dym CL, Shames IH (2013) Solid Mechanics A Variational Approach. Springer, New York

    MATH  Google Scholar 

  7. Celentano L, Coppola A (2011) A computationally efficient method for modeling flexible robots based on the assumed modes method. Appl Math Comput 218(8):4483–4493

    MathSciNet  MATH  Google Scholar 

  8. Mohamed Z, Tokhi MO (2004) Command shaping techniques for vibration control of a flexible robot manipulator. Mechatronics 14(1):69–90

    Article  Google Scholar 

  9. Diaz IM, Pereira E, Feliu V, Cela JJL (2010) Concurrent design of multimode input shapers and link dynamics for flexible manipulators. IEEE-ASME Trans Mechatronics 15(4):646–651

    Article  Google Scholar 

  10. Heidari HR, Korayem MH, Haghpanahi M (2013) Optimal trajectory planning for flexible link manipulators with large deflection using a new displacements approach. J Intell Rob Syst 72(3–4):287–300

    Article  Google Scholar 

  11. Chan JK, Modi VJ (1990) Dynamics and control of an orbiting flexible mobile manipulator. Acta Astronaut 21(11–12):759–769

    Article  Google Scholar 

  12. Liu Z, Liu J, He W (2016) Adaptive boundary control of a flexible manipulator with input saturation. Int J Control 89(6):1191–1202

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang JL, Chen YP (1998) Force control of a single-link flexible arm using sliding-mode theory. J Vib Control 4(2):187–200

    Article  Google Scholar 

  14. Bakhti, M., Idrissi, B.B., Active vibration reducing of a one-link manipulator using the state feedback decoupling and the first order sliding mode control, 5th Int. Conference on Integrated Modeling and Analysis in Applied Control and Automation, IMAACA 2011, pp. 156–164.

  15. Subudhi B, Morris AS (2003) Fuzzy and neuro-fuzzy approaches to control a flexible single-link manipulator. Proc Inst Mech Eng Part I J Syst Control Eng. 217(I5):387–399

    Google Scholar 

  16. Ben Tarla L, Bakhti M, Bououlid Idrissi B (2020) Implementation of second order sliding mode disturbance observer for a one-link flexible manipulator using Dspace Ds1104. SN Applied Sciences 2(3):485

    Article  Google Scholar 

  17. Tarla LB, Bakhti M, Idrissi BB (2018) Finite-time sliding mode observer for uncertain nonlinear flexible manipulators with unknown disturbance. Int Rev Mech Eng 12(11):869–875

    Google Scholar 

  18. Bakhti, M., Ben Tarla, L., Idrissi, B.B., Flexible manipulator state and input estimation using higher order sliding mode differentiator, 2017 14th International Multi-Conference on Systems, Signals and Devices, SSD 2017, 2017, 2017-January, pp. 302–307.

  19. Bakhti M, Bououlid BI (2016) Highly nonlinear rigid flexible manipulator state estimation using the Extended and the Unscented Kalman filters. IREACO. https://doi.org/10.15866/ireaco.v9i3.9018

    Article  Google Scholar 

  20. Tarla LB, Bakhti M, Idrissi BB (2016) Flexible manipulator state reconstruction using luenberger and first order sliding mode observers under parametric uncertainties. IREMOS 9(6):427–434

    Article  Google Scholar 

  21. Gao Y, Wang FY, Zhao ZQ (2012) Flexible manipulators: Modeling, Analysis and Optimum Design. Academic Press, UK

    Google Scholar 

  22. Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(6):311–323

    Article  Google Scholar 

  23. Khaled N (2018) Bibin Pattel. Butterworth-Heinemann, Practical Design and Application of Model Predictive Control

    Google Scholar 

  24. Wang L (2009) Model Predictive Control System Design and Implementation Using MATLAB. Springer, London

    Google Scholar 

  25. Pang HP, Tang G-Y., Global robust optimal sliding mode control for a class of uncertain linear systems. In : IEEE proceedings on control and decision; 2008. p. 3509–3512.

  26. Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding mode control and observation, New York, NY. Birkhauser, USA

    Book  Google Scholar 

  27. Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34(3):379–384

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

There was no funding.

Author information

Authors and Affiliations

Authors

Contributions

Mohammed Bakhti, Aycha Hannane and Badr Bououlid Idrissi.

Corresponding author

Correspondence to Mohammed Bakhti.

Ethics declarations

Conflict of interest

I declare that there is no conflict of interest in the publication of this article, and that there is no conflict of interest with any other author or institution for the publication of this article.

Ethical statements

I hereby declare that this manuscript is the result of my independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups. I am the only author of this manuscript. The legal responsibility of this statement shall be borne by me.

Data availability

Not applicable.

Code Availability

Not applicable.

Appendix: Numerical Values of Model Matrices Used for Simulation

Appendix: Numerical Values of Model Matrices Used for Simulation

The Mass Matrix:

$$M\left(q\right)=\left[\begin{array}{ll}0.13 +0.2783{q}^{2}& 0.1163\\ 0.1162& 0.2783\end{array}\right]$$

The vector of nonlinear centrifugal and Coriolis terms:

$$ h\left( {q,\dot{q}} \right) = \left[ {\begin{array}{*{20}c} {0.5566\;q\dot{q}\dot{\theta }} \\ { - 0.2783\;q\dot{\theta }^{2} } \\ \end{array} } \right] $$

The stiffness matrix

$$K\left(q\right)=\left[\begin{array}{cc}0& 0\\ 0& 22.94\end{array}\right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhti, M., Hannane, A. & Bououlid Idrissi, B. Robustifying adaptive model predictive control for a one-link flexible manipulator using super-twisting integral sliding mode control. Int. J. Dynam. Control 10, 1934–1942 (2022). https://doi.org/10.1007/s40435-022-00933-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00933-5

Keywords

Navigation