Abstract
This article represents a brief study on popular bio-inspired meta-heuristic optimization methods and their applications. These methods, which imitate biological phenomena or natural occurrences, have the potential to solve real-world problems. This article looked at several popular optimization methods and briefly discussed them. Although these methods have been used in a variety of domains of science and engineering, this article has focused on control engineering and electrical power systems in particular. This article aimed to provide a clearer picture of the recent trends and practices in the use of optimization in various control studies and research studies related to electrical system optimization.
This is a preview of subscription content, access via your institution.

Abbreviations
- Â Â Â Â Â Â ACO:
-
Ant colony optimization
- ABC:
-
Artificial bee colony
- AVR:
-
Automatic voltage regulator
- CS:
-
Cuckoo search
- DA:
-
Dragonfly algorithm
- GA:
-
Genetic algorithm
- GWO:
-
Grey wolf optimization
- GOA:
-
Grasshopper optimization algorithm
- ILQG:
-
Integral linear quadratic Gaussian
- ITAE:
-
Integral of time multiplied absolute error
- ITSE:
-
Integral of time weighted squared error
- LQR:
-
Linear quadratic regulator
- LQG:
-
Linear quadratic Gaussian
- LAE:
-
Least average error
- MA:
-
Mayfly algorithm
- MPC:
-
Model predictive control
- MPPT:
-
Maximum power point tracking
- MG:
-
Microgrid
- PSO:
-
Particle swarm optimization
- PID:
-
Proportional integral derivative
- PV:
-
Photovoltaic
- SSA:
-
Salp swarm algorithm
- WO:
-
Whale optimization
References
Mirjalili S, Dong JS, Lewis A (2020) Nature-inspired optimizers
Binitha S, Sathya SS et al (2012) A survey of bio inspired optimization algorithms. Int J Soft Comput Eng 2(2):137
He J, Li YW, Guerrero JM, Blaabjerg F, Vasquez JC (2013) An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Trans Power Electron 28(11):5272
Sarker SK, Badal FR, Das P, Das SK (2019) Multivariable integral linear quadratic Gaussian robust control of islanded microgrid to mitigate voltage oscillation for improving transient response. Asian J Control 21(4):2114
Patarroyo-Montenegro JF, Andrade F, Guerrero JM, Vasquez JC (2020) A linear quadratic regulator with optimal reference tracking for three-phase inverter-based islanded microgrids. IEEE Trans Power Electron 36(6):7112
Haque MYYU, Islam MR, Hasan J, Sheikh MRI (2021) Negative imaginary theory-based proportional resonant controller for voltage control of three-phase islanded microgrid. J Control Autom Electr Syst 32(1):214
Karimi-Ghartemani M, Karimi H (2020) A robust multivariable approach for current control of voltage-source converters in synchronous frame. IEEE J Emerg Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2020.3031206
Holland JH (1984) Genetic algorithms and adaptation., In: Adaptive control of Ill-defined systems (Springer, 1984), pp. 317–333
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conf. on neural networks. 4:1942–1948
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29
Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res 1(1):1
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459
Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC) (Ieee, 2009), pp. 210–214
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46
Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memetic Comput 6(1):31
Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676
Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51
Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053
Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24
Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30
Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems, In: 2018 IEEE congress on evolutionary computation (CEC) (IEEE, 2018), pp. 1–8
Masadeh R, Mahafzah BA, Sharieh A (2019) Sea lion optimization algorithm. Sea 10(5):388
Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849
Qais MH, Hasanien HM, Alghuwainem S (2019) Enhanced salp swarm algorithm: application to variable speed wind generators. Eng Appl Artif Intell 80:82
Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715
Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148
Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559
Jia H, Peng X, Lang C (2021) Remora optimization algorithm. Expert Syst Appl 185:115665
Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157:107250
Połap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107
MiarNaeimi F, Azizyan G, Rashki M (2021) Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowl-Based Syst 213:106711
Naruei I, Keynia F (2021) A new optimization method based on coot bird natural life model. Exp Syst Appl 183:115352
Mirjalili S (2019) Genetic algorithm. In: Evolutionary algorithms and neural networks. Springer, pp. 43–55
Potts JC, Giddens TD, Yadav SB (1994) The development and evaluation of an improved genetic algorithm based on migration and artificial selection. IEEE Trans Syst Man Cybern 24(1):73
Park JB, Park YM, Won JR, Lee KY (2000) An improved genetic algorithm for generation expansion planning. IEEE Trans Power Syst 15(3):916
Gen M, Cheng R (1999) Genetic algorithms and engineering optimization. Wiley
Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387
Benuwa BB, Ghansah B, Wornyo DK, Adabunu SA (2016) A comprehensive review of Particle swarm optimization. Int J Eng Res Afr 23:141
Nayyar A, Singh R (2016) Ant colony optimization-computational swarm intelligence technique. In: 2016 3rd International conference on computing for sustainable global development (INDIACom) (IEEE, 2016), pp. 1493–1499
Balasubramani K, Marcus K (2013) A comprehensive review of artificial bee colony algorithm. Int J Comput Technol 5(1):15
Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508
Fister I Jr, Fister D, Fister I (2013) A comprehensive review of cuckoo search: variants and hybrids. Int J Math Modell Numer Optim 4(4):387
Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: Whale optimization algorithm and its applications. Swarm Evol Comput 48:1
Meraihi Y, Ramdane-Cherif A, Acheli D, Mahseur M (2020) Dragonfly algorithm: a comprehensive review and applications. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04866-y
Abualigah L, Diabat A (2020) A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04789-8
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A (2021) Grasshopper optimization algorithm: theory, variants, and applications. IEEE Access 9:50001
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163
Abualigah L, Shehab M, Alshinwan M, Alabool H (2020) Salp swarm algorithm: a comprehensive survey. Neural Comput Appl 32(15):11195
Lin CL, Jan HY, Shieh NC (2003) GA-based multiobjective PID control for a linear brushless DC motor. IEEE/ASME Trans Mechatron 8(1):56
Kim DH (2007) GA-PSO based vector control of indirect three phase induction motor. Appl Soft Comput 7(2):601
Habib M, Khoucha F, Harrag A (2017) GA-based robust LQR controller for interleaved boost DC-DC converter improving fuel cell voltage regulation. Electr Power Syst Res 152:438
Huerta F, Perez J, Cóbreces S, Rizo M (2018) Frequency-adaptive multiresonant LQG state-feedback current controller for LCL-filtered VSCs under distorted grid voltages. IEEE Trans Industr Electron 65(11):8433
Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4):1232
Gaing ZL (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19(2):384
Bevrani H, Habibi F, Babahajyani P, Watanabe M, Mitani Y (2012) Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans Smart Grid 3(4):1935
Bououden S, Chadli M, Karimi HR (2015) An ant colony optimization-based fuzzy predictive control approach for nonlinear processes. Inf Sci 299:143
Kaliannan J, Baskaran A, Dey N (2015) Automatic generation control of thermal-thermal-hydro power systems with PID controller using ant colony optimization. Int J Serv Sci Manag Eng Technol 6(2):18
Tiwari PK, Vidyarthi DP (2016) Improved auto control ant colony optimization using lazy ant approach for grid scheduling problem. Futur Gener Comput Syst 60:78
Oshaba A, Ali ES, Abd Elazim SM (2017) Speed control of SRM supplied by photovoltaic system via ant colony optimization algorithm. Neural Comput Appl 28(2):365
Bergna G, Garcés A, Berne E, Egrot P, Arzandé A, Vannier JC, Molinas M (2013) A generalized power control approach in ABC frame for modular multilevel converter HVDC links based on mathematical optimization. IEEE Trans Power Deliv 29(1):386
Naidu K, Mokhlis H, Bakar AA (2014) Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int J Electr Power Energy Syst 55:657
Babaie M, Sharifzadeh M, Mehrasa M, Chouinard G, Al-Haddad K (2020) Supervised learning model predictive control trained by ABC algorithm for common mode voltage suppression in NPC inverter. IEEE J Emerg Sel Top Power Electron 9:3446
Puangdownreong D, Nawikavatan A, Thammarat C (2016) Optimal design of I-PD controller for DC motor speed control system by cuckoo search. Proc Comput Sci 86:83
Stojanovic V, Nedic N, Prsic D, Dubonjic L, Djordjevic V (2016) Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. Int J Adv Manuf Technol 87(9):2497
Chitara D, Niazi KR, Swarnkar A, Gupta N (2018) Cuckoo search optimization algorithm for designing of a multi-machine power system stabilizer. IEEE Trans Ind Appl 54(4):3056
Mohanty S, Subudhi B, Ray PK (2015) A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans Sustain Energy 7(1):181
Pradhan M, Roy PK, Pal T (2016) Grey wolf optimization applied to economic load dispatch problems. Int J Electr Power Energy Syst 83:325
Sun X, Jin Z, Cai Y, Yang Z, Chen L (2020) Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Trans Power Electron 35(12):13631
Oliva D, Abd El Aziz M, Hassanien AE (2017) Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl Energy 200:141
Hasanien HM (2018) Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electric Power Syst Res 157:168
Xiong G, Zhang J, Shi D, He Y (2018) Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers Manag 174:388
Palappan A, Thangavelu J (2018) A new meta heuristic dragonfly optimizaion algorithm for optimal reactive power dispatch problem. Gazi Univ J Sci 31(4):1107
Vanishree J, Ramesh V (2018) Optimization of size and cost of static var compensator using dragonfly algorithm for voltage profile improvement in power transmission systems. Int J Renew Energy Res 8(1):56
Kouba NEY, Menaa M, Hasni M, Boudour M (2018) A novel optimal combined fuzzy PID controller employing dragonfly algorithm for solving automatic generation control problem. Electric Power Components Syst 46(19–20):2054
Jumani TA, Mustafa MW, Md Rasid M, Mirjat NH, Leghari ZH, Saeed MS (2018) Optimal voltage and frequency control of an islanded microgrid using grasshopper optimization algorithm. Energies 11(11):3191
Omar AI, Aleem SHA, El-Zahab EE, Algablawy M, Ali ZM (2019) An improved approach for robust control of dynamic voltage restorer and power quality enhancement using grasshopper optimization algorithm. ISA Trans 95:110
Bhuyan M, Barik AK, Das DC (2020) GOA optimised frequency control of solar-thermal/sea-wave/biodiesel generator based interconnected hybrid microgrids with DC link. Int J Sustain Energ 39(7):615
Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L (2019) Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod 215:1203
Kansal V, Dhillon JS (2020) Emended salp swarm algorithm for multiobjective electric power dispatch problem. Appl Soft Comput 90:106172
Liu Z, Jiang P, Wang J, Zhang L (2021) Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm. Expert Syst Appl 177:114974
He X, He B, Zhao Y, Cui R, Zhang J, Dong Y, Jiang R (2021) MPPT control based on improved mayfly optimization algorithm under complex shading conditions. Int J Emerg Electr Power Syst. https://doi.org/10.1515/ijeeps-2021-0008/html
Elsisi M, Tran MQ, Mahmoud K, Lehtonen M, Darwish MM (2021) Robust design of ANFIS-based blade pitch controller for wind energy conversion systems against wind speed fluctuations. IEEE Access 9:37894
Saravanan R, Kannayeram GP, Muniraj R (2021) Mitigating unbalance and improving voltage considering higher penetration of EVs and DG using hybrid optimization technique. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.13119
Acknowledgements
None.
Funding
Not Available.Availability of data and material  Not Available.Code availability  Not Available.
Author information
Authors and Affiliations
Contributions
1. Md. Hassanul Karim Roni: Research, writing, drafting. 2. M. S. Rana: Supervision, Proof Reading, drafting. 3. H. R. Pota: Supervision, Proof Reading. 4. Md. Mahmudul Hasan: Research. 5. Md. Shajid Hussain: Research.
Ethics declarations
Conflict of interest
We declare that there are no conflicts of interest for this article.
Rights and permissions
About this article
Cite this article
Roni, M.H.K., Rana, M.S., Pota, H.R. et al. Recent trends in bio-inspired meta-heuristic optimization techniques in control applications for electrical systems: a review. Int. J. Dynam. Control 10, 999–1011 (2022). https://doi.org/10.1007/s40435-021-00892-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40435-021-00892-3