Skip to main content
Log in

Swarm-based robust fixed-structure controller design for buck converter using Kharitonov approach: design and experiment

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

A key challenge of DC–DC converters is designing an appropriate controller for reaching the output voltage to steady-state in a limited time with small variation. In addition, the parameters of converters may be affected by different factors that can make difficulties to voltage regulation. Robust control theory is a significant method to deal with this problem. Despite high efficiency, the high-order robust controllers may not be feasible for real-time implementation due to the hardware and computational limitations. In this paper, we study the swarm-based robust controller design with fixed-structure for DC–DC converter using the Kharitonov approach. The developed algorithm allows implementing the simple structure controllers that guarantees both robust stability and performance. The controller behavior is validated and compared with other related works. Experiments are provided to demonstrate the feasibility of the designed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Khayat Y, Naderi M, Shafiee Q, Batmani Y, Fathi M, Bevrani H (2017) Robust control of a DC–DC boost converter: H2 and H techniques. In: 2017 8th power electronics, drive systems and technologies conference, 2017. IEEE, pp 407–412

  2. Nizami TK, Mahanta C (2016) An intelligent adaptive control of DC–DC buck converters. J Franklin Inst 353(12):2588–2613

    Article  MathSciNet  Google Scholar 

  3. Hsu YC, Ting CY, Hsu L-S, Lin J-Y, Chen CC-P (2018) A transient enhancement DC–DC buck converter with dual operating modes control technique. IEEE Trans Circuits Syst II Express Briefs 66(8):1376–1380

    Article  Google Scholar 

  4. Zerroug N, Harmas MN, Benaggoune S, Bouchama Z, Zehar K (2018) DSP-based implementation of fast terminal synergetic control for a DC–DC Buck converter. J Franklin Inst 355(5):2329–2343

    Article  MathSciNet  Google Scholar 

  5. Dali A, Diaf S, Tadjine M (2019) Maximum power tracking and current control for solar photovoltaic system applications, hybrid dynamical system approach. J Dyn Syst Meas Control 141(9):91017–91021

    Article  Google Scholar 

  6. Al-Baidhani H, Kazimierczuk MK, Reatti A (2018) Nonlinear modeling and voltage-mode control of DC-DC boost converter for CCM. In: 2018 IEEE international symposium on circuits and systems, 2018. IEEE, pp 1–5

  7. Rakhshan M, Vafamand N, Khooban M-H, Blaabjerg F (2017) Maximum power point tracking control of photovoltaic systems: a polynomial fuzzy model-based approach. IEEE J Emerg Sel Top Power Electron 6(1):292–299

    Article  Google Scholar 

  8. Ram JP, Babu TS, Rajasekar N (2017) A comprehensive review on solar PV maximum power point tracking techniques. Renew Sustain Energy Rev 67:826–847

    Article  Google Scholar 

  9. Sudiharto I, Rahadyan MI, Qudsi OA (2021) Design and implementation of buck converter for fast charging with fuzzy logic. J Adv Res Electr Eng 5(1)

  10. Guiza D, Soufi Y, Ounnas D, Metatla A (2019) Design and implementation of Takagi-Sugeno fuzzy tracking control for a DC–DC buck converter

  11. Benzaouia A, Mesquine F, Benhayoun M, Schulte H, Georg S (2014) Stabilization of positive constrained T-S fuzzy systems: application to a buck converter. J Franklin Inst 351(8):4111–4123

    Article  MathSciNet  Google Scholar 

  12. Al-Baidhani H, Kazimierczuk, MK (2018) PWM-based proportional-integral sliding-mode current control of DC–DC boost converter. In: 2018 IEEE Texas power and energy conference, 2018. IEEE, pp 1–6

  13. Salimi M, Soltani J, Zakipour A, Abjadi NR (2015) Hyper-plane sliding mode control of the DC–DC buck/boost converter in continuous and discontinuous conduction modes of operation. IET Power Electron 8(8):1473–1482

    Article  Google Scholar 

  14. Taheri B, Sedaghat M, Bagherpour MA, Farhadi P (2019) A new controller for DC-DC converters based on sliding mode control techniques. J Control Autom Electr Syst 30(1):63–74

    Article  Google Scholar 

  15. Chen Z (2012) PI and sliding mode control of a Cuk converter. IEEE Trans Power Electron 27(8):3695–3703

    Article  Google Scholar 

  16. Wang B, Ma G, Xu D, Zhang L, Zhou J (2018) Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source. Appl Energy 228:1373–1384

    Article  Google Scholar 

  17. Salimi M, Soltani J, Markadeh GA (2011) A novel method on adaptive backstepping control of buck choppers. In: 2nd power electronics, drive systems and technologies conference, 2011. IEEE, pp 562–567

  18. Moayedi S, Nasirian V, Lewis FL, Davoudi A (2014) Team-oriented load sharing in parallel DC–DC converters. IEEE Trans Ind Appl 51(1):479–490

    Article  Google Scholar 

  19. Nizami TK, Chakravarty A, Mahanta C (2018) Analysis and experimental investigation into a finite time current observer based adaptive backstepping control of buck converters. J Franklin Inst 355(12):4996–5017

    Article  MathSciNet  Google Scholar 

  20. Rozali SM et al (2017) Robust control design of nonlinear system via backstepping-PSO with sliding mode techniques. In: Asian simulation conference, 2017. Springer, pp 27–37

  21. Ardhenta L, Subroto R, Hasanah R (2020) Adaptive backstepping control for buck DC/DC converter and DC motor. J Phys Conf Ser 1595(1):012025

    Article  Google Scholar 

  22. Shuai D, Xie Y, Wang X (2008) Optimal control of Buck converter by state feedback linearization. In 7th world congress on intelligent control and automation, 2008. IEEE, pp 2265–2270

  23. Movahed AM, Shandiz HT, Hosseini Sani SK (2016) Comparison of fractional order modelling and integer order modelling of fractional order buck converter in continuous condition mode operation. Adv Electr Electron Eng 14(5):531–542

    Google Scholar 

  24. Ibarra L, Macias I, Ponce P, Molina A (2015) On DC/DC voltage buck converter control improvement through the QFT approach. In: New developments in circuits, systems, signal processing, communication and computers, pp 183–190

  25. Shaw P, Veerachary M (2017) Mixed-sensitivity based robust H controller design for high-gain boost converter. In: 2017 international conference on computer, communications and electronics, 2017. IEEE, pp 612–617

  26. Lin J, Chen S (1996) /spl mu/-based controller design for a DC–DC switching power converter with line and load variations. In: 22nd international conference on industrial electronics, control, and instrumentation, 1996, vol 2. IEEE, pp 1029–1034

  27. Vidal-Idiarte E, Martinez-Salamero L, Valderrama-Blavi H, Guinjoan F, Maixe J (2003) Analysis and design of H/sub/spl infin//control of nonminimum phase-switching converters. IEEE Trans Circuits Syst I Fundam Theory Appl 50(10):1316–1323

    Article  Google Scholar 

  28. Bevrani H, Ise T, Mitani Y, Tsuji K (2004) A robust approach to controller design for DC-DC quasi-resonant converters. IEEJ Trans Ind Appl 124(1):91–100

    Article  Google Scholar 

  29. Buso S (1996) /spl mu/-synthesis of a robust voltage controller for a buck-boost converter. In: 27th annual IEEE power electronics specialists conference, 1996, vol 1. IEEE, pp 766–772

  30. Buso S (1999) Design of a robust voltage controller for a buck-boost converter using/spl mu/-synthesis. IEEE Trans Control Syst Technol 7(2):222–229

    Article  Google Scholar 

  31. Al Issa S, Kar I (2021) Event-triggered adaptive control of uncertain non-linear systems under input delay and limited resources. Int J Dyn Control 1–8

  32. Stein G, Doyle JC (1991) Beyond singular values and loop shapes. J Guid Control Dyn 14(1):5–16

    Article  MathSciNet  Google Scholar 

  33. Sandou G, Duc G (2009) Using particle swarm optimization for reduced order H synthesis. IFAC Proc Vol 42(2):46–51

    Article  Google Scholar 

  34. Ho MT, Lin C-Y (2003) PID controller design for robust performance. IEEE Trans Autom Control 48(8):1404–1409

    Article  MathSciNet  Google Scholar 

  35. Alfi A, Bakhshi A, Yousefi M, Talebi HA (2016) Design and implementation of robust-fixed structure controller for telerobotic systems. J Intell Rob Syst 83(2):253–269

    Article  Google Scholar 

  36. Sadek U, Sarjaš A, Chowdhury A, Svečko R (2016) FPGA-based optimal robust minimal-order controller structure of a DC–DC converter with Pareto front solution. Control Eng Pract 55:149–161

    Article  Google Scholar 

  37. Shahri ESA, Alfi A, Machado JT (2019) Fractional fixed-structure H controller design using augmented Lagrangian particle swarm optimization with fractional order velocity. Appl Soft Comput 77:688–695

    Article  Google Scholar 

  38. Kim TH, Maruta I, Sugie T (2008) Robust PID controller tuning based on the constrained particle swarm optimization. Automatica 44(4):1104–1110

    Article  MathSciNet  Google Scholar 

  39. Shokri-Ghaleh H, Alfi A, Ebadollahi S, Shahri AM, Ranjbaran S (2020) Unequal limit cuckoo optimization algorithm applied for optimal design of nonlinear field calibration problem of a triaxial accelerometer. Measurement 164:107963

    Article  Google Scholar 

  40. Mousavi Y, Alfi A, Kucukdemiral IB (2020) Enhanced fractional chaotic whale optimization algorithm for parameter identification of isolated wind-diesel power systems. IEEE Access 8:140862–140875

    Article  Google Scholar 

  41. Machado JT, Pahnehkolaei SMA, Alfi A (2021) Complex-order particle swarm optimization. Commun Nonlinear Sci Numer Simul 92:1448

    Article  MathSciNet  Google Scholar 

  42. Erikson R, Maksimovic D (2001) Fundamentals of power electronics: Kluwer academic. Norwell, USA

  43. Zhou K, Doyle JC (1998) Essentials of robust control. Prentice hall, Upper Saddle River

    MATH  Google Scholar 

  44. Alfi A, Khosravi A, Lari A (2014) Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via μ synthesis. IMA J Math Control Inf 31(1):111–136

    Article  MathSciNet  Google Scholar 

  45. Zamani M, Sadati N, Ghartemani MK (2009) Design of an H PID controller using particle swarm optimization. Int J Control Autom Syst 7(2):273–280

    Article  Google Scholar 

  46. Alfi A, Fateh M-M (2010) Parameter identification based on a modified PSO applied to suspension system. J Softw Eng Appl 3(03):221

    Article  Google Scholar 

  47. Barmish BR, Jury E (1994) New tools for robustness of linear systems. IEEE Trans Autom Control 39(12):2525–2525

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Alfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedehi, A.G., Alfi, A. Swarm-based robust fixed-structure controller design for buck converter using Kharitonov approach: design and experiment. Int. J. Dynam. Control 10, 1251–1264 (2022). https://doi.org/10.1007/s40435-021-00878-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00878-1

Keywords

Navigation