Skip to main content
Log in

Modeling and gain-scheduled control of an aerial manipulator

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Aerial manipulators (AMs) are flying robotic systems composed of a multicopter equipped with one or more robotic arms. The dynamic modeling of AMs is complex due to the highly coupled interactions between the multicopter and the robotic arms. In this paper, the dynamics and kinematics of a quadcopter are combined with the Newton–Euler recursive method to obtain the forces applied by the robotic arm on the multicopter. The complete dynamic model is then linearized and expressed in terms of the articulation angles of the robotic arm for controller synthesis purposes. A novel gain-scheduled controller based on structured \({\mathcal {H}}_\infty \) synthesis is proposed using the joint angles of the robotic arm as scheduling variables. The controller is tuned according to multiple performance objectives on a family of parameterized linearized models. Simulations on the non-linear model with the gain-scheduled controller demonstrate its ability to compensate for robotic arm movements, while keeping the desired dynamic characteristics regardless of arm position. The advantage of gain scheduling is demonstrated by a comparison with a non-scheduled version of the controller. Finally, the controller is shown to be able to compensate for a \(10\%\) uncertainty on the nominal tuning values of the physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Klemas VV (2015) Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. J Coast Res 315:1260–1267. https://doi.org/10.2112/JCOASTRES-D-15-00005.1

    Article  Google Scholar 

  2. Sa I, Kamel M, Burri M, Bloesch M, Khanna R, Popovic M, Nieto J, Siegwart R (2018) Build your own visual-inertial drone: a cost-effective and open-source autonomous drone. IEEE Robot Autom Mag 25(1):89–103. https://doi.org/10.1109/MRA.2017.2771326

    Article  Google Scholar 

  3. Jung S, Hwang S, Shin H, Shim DH (2018) Perception, Guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Robot Autom Lett 3(3):2539–2544. https://doi.org/10.1109/LRA.2018.2808368

    Article  Google Scholar 

  4. Baltovski T, Nokleby S, Pop-Iliev R, (2015) Towards performing remote manipulation using an autonomous aerial vehicle. In: CCToMM mechanisms, machines, and mechatronics (M3) symposium, (2015) Ottawa. Ontario, Canada

  5. Hamaza S, Georgilas I, Heredia G, Ollero A, Richardson T (2020) Design, modeling, and control of an aerial manipulator for placement and retrieval of sensors in the environment. J Field Robot. https://doi.org/10.1002/rob.21963

    Article  Google Scholar 

  6. Bouabdallah S, Murrieri P, Siegwart R (2004) Design and control of an indoor micro quadrotor. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04, pp 4393–4398 Vol.5. IEEE, New Orleans, LA, USA. https://doi.org/10.1109/ROBOT.2004.1302409

  7. Tayebi A, McGilvray S (2006) Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Control Syst Technol 14(3):562–571. https://doi.org/10.1109/TCST.2006.872519

    Article  Google Scholar 

  8. Pounds P, Mahony R, Corke P (2010) Modelling and control of a large quadrotor robot. Control Eng Practice 18(7):691–699. https://doi.org/10.1016/j.conengprac.2010.02.008

    Article  Google Scholar 

  9. Bouabdallah S, Siegwart R, (2005) Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In, (2005) IEEE international conference on robotics and automation, pp 2247–2252. IEEE, Barcelona, Spain. https://doi.org/10.1109/ROBOT.2005.1570447

  10. Madani T, Benallegue A, (2006) Backstepping control for a quadrotor helicopter. In, (2006) IEEE/RSJ international conference on intelligent robots and systems, pp 3255–3260. IEEE, Beijing, China. https://doi.org/10.1109/IROS.2006.282433

  11. Palunko I, Fierro R (2011) Adaptive control of a quadrotor with dynamic changes in the center of gravity. IFAC Proc 44(1):2626–2631. https://doi.org/10.3182/20110828-6-IT-1002.02564

    Article  Google Scholar 

  12. Stevens BL, Lewis FL, Johnson EN (2016) Aircraft control and simulation: dynamics, controls design, and autonomous systems, 3rd edn. Wiley, Hoboken, N.J

    Google Scholar 

  13. Suseong K, Seungwon C, Kim HJ, (2013) Aerial manipulation using a quadrotor with a two DOF robotic arm. In, (2013) IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4990–4995. IEEE, Tokyo, Japan. https://doi.org/10.1109/IROS.2013.6697077

  14. Fanni M, Khalifa A (2017) A new 6-DOF quadrotor manipulation system: design, kinematics, dynamics, and control. IEEE/ASME Trans Mechatron 22(3):1315–1326. https://doi.org/10.1109/TMECH.2017.2681179

    Article  Google Scholar 

  15. Orsag M, Korpela C, Oh P (2013) Modeling and control of MM-UAV: mobile manipulating unmanned aerial vehicle. J Intell Robot Syst 69(1–4):227–240. https://doi.org/10.1007/s10846-012-9723-4

    Article  Google Scholar 

  16. Orsag M, Korpela C, Oh P, Bogdan S (2018) Aerial manipulator dynamics. Aerial manipulation. Springer International Publishing, Cham, pp 123–163

  17. Bazylev D, Zimenko K, Margun A, Bobtsov A, Kremlev A (2014) Adaptive control system for quadrotor equiped with robotic arm. In: 2014 19th international conference on methods and models in automation and robotics (MMAR), pp. 705–710. IEEE, Miedzyzdroje, Poland. https://doi.org/10.1109/MMAR.2014.6957440

  18. Cataldi E, Muscio G, Trujillo MA, Rodriguez Y, Pierri F, Antonelli G, Caccavale F, Viguria A, Chiaverini S, Ollero A, (2016) Impedance control of an aerial-manipulator: preliminary results. In, (2016) IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3848–3853. IEEE, Daejeon, South Korea. https://doi.org/10.1109/IROS.2016.7759566

  19. Bouabdallah S, Noth A, Siegwart R (2004) PID vs LQ control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ international conference on intelligent robots and systems, vol. 3, pp. 2451–2456. IEEE, Sendai, Japan. https://doi.org/10.1109/IROS.2004.1389776

  20. Bouadi H, Simoes Cunha S, Drouin A, Mora-Camino F (2011) Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking. In: 2011 IEEE 12th international symposium on computational intelligence and informatics (CINTI), pp. 449–455. IEEE, Budapest, Hungary. https://doi.org/10.1109/CINTI.2011.6108547

  21. Caccavale F, Giglio G, Muscio G, Pierri F (2014) Adaptive control for UAVs equipped with a robotic arm. IFAC Proc 47(3):11049–11054. https://doi.org/10.3182/20140824-6-ZA-1003.00790

    Article  Google Scholar 

  22. Kannan S, Alma M, Olivares-Mendez MA, Voos H, (2014) Adaptive control of Aerial Manipulation Vehicle. In, (2014) IEEE international conference on control system, computing and engineering (ICCSCE), pp 273–278. IEEE, Batu Ferringhi, Malaysia. https://doi.org/10.1109/ICCSCE.2014.7072729

  23. Antonelli G, Cataldi E (2014) Adaptive control of arm-equipped quadrotors. Theory and simulations. In: 2014 22nd mediterranean conference of control and automation (MED), pp. 1446–1451. IEEE, Palermo, Italy. https://doi.org/10.1109/MED.2014.6961579

  24. Rajappa S, Masone C, Bulthoff HH, Stegagno P, (2016) Adaptive super twisting controller for a quadrotor UAV. In, (2016) IEEE international conference on robotics and automation (ICRA), pp 2971–2977. IEEE, Stockholm, Sweden. https://doi.org/10.1109/ICRA.2016.7487462

  25. Jimenez-Cano A, Martin J, Heredia G, Ollero A, Cano R, (2013) Control of an aerial robot with multi-link arm for assembly tasks. In, (2013) IEEE international conference on robotics and automation (ICRA), pp 4916–4921. IEEE, Karlsruhe, Germany. https://doi.org/10.1109/ICRA.2013.6631279

  26. Heredia G, Jimenez-Cano A, Sanchez I, Llorente D, Vega V, Braga J, Acosta J, Ollero A, (2014) Control of a multirotor outdoor aerial manipulator. In, (2014) IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3417–3422. IEEE, Chicago, IL, USA. https://doi.org/10.1109/IROS.2014.6943038

  27. Yang H, Lee D, (2014) Dynamics and control of quadrotor with robotic manipulator. In, (2014) IEEE international conference on robotics and automation (ICRA), pp 5544–5549. IEEE, Hong Kong, China. https://doi.org/10.1109/ICRA.2014.6907674

  28. Sharifi M, Sayyaadi H (2015) Nonlinear robust adaptive Cartesian impedance control of UAVs equipped with a robot manipulator. Adv Robot 29(3):171–186. https://doi.org/10.1080/01691864.2014.1002529

    Article  Google Scholar 

  29. Apkarian P, (2013) Tuning controllers against multiple design requirements. In, (2013) American control conference (ACC), pp 3888–3893. IEEE, Washington, DC, USA. https://doi.org/10.1109/ACC.2013.6580433

  30. Apkarian P, Noll D (2006) Nonsmooth H\(_{\infty }\) synthesis. IEEE Trans Autom Control 51(1):71–86. https://doi.org/10.1109/TAC.2005.860290

    Article  MathSciNet  MATH  Google Scholar 

  31. Gahinet P, Apkarian P (2011) Structured H\(_{\infty }\) synthesis in MATLAB. IFAC Proc 44(1):1435–1440. https://doi.org/10.3182/20110828-6-IT-1002.00708

    Article  Google Scholar 

  32. Rugh WJ, Shamma JS (2000) Research on gain scheduling. Automatica 36(10):1401–1425. https://doi.org/10.1016/S0005-1098(00)00058-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Orsag M, Korpela CM, Bogdan S, Oh PY (2014) Hybrid adaptive control for aerial manipulation. J Intell Robot Syst 73(1–4):693–707. https://doi.org/10.1007/s10846-013-9936-1

    Article  Google Scholar 

  34. Lhachemi H, Saussié D, Zhu G (2016) Hidden coupling terms inclusion in gain-scheduling control design: extension of an eigenstructure assignment-based technique. IFAC-PapersOnLine 49(17):403–408. https://doi.org/10.1016/j.ifacol.2016.09.069

    Article  Google Scholar 

  35. Lhachemi H, Saussié D, Zhu G (2017) Explicit hidden coupling terms handling in gain-scheduling control design via eigenstructure assignment. Control Eng Practice 58:1–11. https://doi.org/10.1016/j.conengprac.2016.09.005

    Article  Google Scholar 

  36. Nguyen D, Saussié D, Saydy L (2018) Fault-tolerant control of a hexacopter uav based on self-scheduled control allocation. In: 2018 international conference on unmanned aircraft systems (ICUAS), pp 385–393. https://doi.org/10.1109/ICUAS.2018.8453440

  37. Nguyen T, Saussie D, Saydy L (2020) Design and experimental validation of robust self-scheduled fault-tolerant control laws for a multicopter uav. IEEE/ASME Trans Mechatron. https://doi.org/10.1109/TMECH.2020.3042333

    Article  Google Scholar 

  38. Craig JJ (2005) Introduction to robotics: mechanics and control, 3rd edn. Pearson Education International, Pearson, Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  39. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, Hoboken, NJ

    Google Scholar 

  40. Andry A, Shapiro E, Chung J (1983) Eigenstructure assignment for linear systems. IEEE Trans Aerosp Electron Syst AES-19(5), 711–729. https://doi.org/10.1109/TAES.1983.309373

Download references

Funding

C. Coulombe is supported by a Fonds de recherche Nature et Technologie du Québec scholarship. The project is funded by Natural Sciences and Engineering Research Council of Canada Grant Numbers RGPIN-2019-05497 and RGPIN-2020-06608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Coulombe.

Ethics declarations

Conflicts of interest

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulombe, C., Saussié, D. & Achiche, S. Modeling and gain-scheduled control of an aerial manipulator. Int. J. Dynam. Control 10, 217–229 (2022). https://doi.org/10.1007/s40435-021-00807-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00807-2

Keywords

Navigation