Skip to main content

Advertisement

Log in

Exploitation of multi-models identification with decoupled states in twin shaft gas turbine variables for its diagnosis based on parity space approach

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In practice, model-based fault diagnosis methods are essential to improve availability with reduced operating costs and good operational reliability of industrial systems. This is based firstly on the choice of the model identification method adapted to the system, depending on the complexity of the system and its interaction with its environment. Then, on the choice of an adequate diagnostic strategy for the generation of system failure indicators. In this work, the identification problem of the model variables of a double-shaft gas turbine is treated, to deal with the dynamics of model nonlinearities of this rotating machine. Hence, the equations which govern this turbine are carried out, using the local multi-models’ techniques with decoupled states, from the input/output measurements collected on the examined turbine. To best characterize their dynamic behavior in diverse operating areas. Subsequently, the resulting multi-model decoupled states are used to develop a fault diagnosis approach for this turbine. This makes it possible to generate symptoms of turbine failure from consistency tests between the measurements extracted on its real behavior, and the estimated signals which translate the reference behavior, given by the obtained multi-models. The obtained results in this work show the implementation efficiency of the proposed techniques of modeling and estimation of the examined decoupled turbine states, up to the phase of its implementation in the diagnostic strategy of the examined turbine based on the parity space approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

\(L\) :

Partition blocks

\(\chi\) :

Coefficient of constriction

\(\sigma\) :

Coefficient of dispersion

\(c_{1}\) and \(c_{2}\) :

Acceleration coefficients

\(w_{f}\) :

Fuel flow

\(D\left( h \right)\) :

Research direction in parametric space

\(\Delta\) :

Adjustment factor

\(\mu_{i}\) :

Weighting function (activation)

\(J\left( \theta \right)\) :

Objective cost minimization function

\(\omega_{i}\) :

Weight functions

\(G\) :

Gradient

GT:

Gas Turbine

h:

Iteration index

\(H\left( \theta \right)\) :

Hessian

HP:

High pressure

\(\xi\) :

Function index

\(\mu_{i}\) :

Index of weighting functions

\(k\) :

Discrete time iteration index

\(i\) :

Local model index

\(j\) :

Multi-model output index

Li:

Sub-models i (i = 2, 3, 4)

LP:

Low pressure

A, B, C & D:

State model matrix

\(I\) :

Identity matrix

\(A_{i}\), \(B_{i}\), \(C_{i,j}\) and \(D_{i,j}\) :

Matrices of decoupled state multi-models

\(g(t)\) :

Best overall position

MMA:

Multi model approach

MOO:

Multi objective optimization

N:

Number of measurements

NGP:

High pressure turbine

\(p\) :

Number of multi-model outputs

NPT:

Low pressure turbine

NSGA:

Non dominated sorting genetic algorithm

\(L\) :

Parity space order

\(\lambda\) :

Regularization parameter

\(w\) :

Inertia weight

\(x_{i} (t)\) :

Position of the particle

PSO:

Particle Swarm Optimization

\(y\) :

Model output

\(\hat{y}\left( k \right)\) :

Estimated multi-model output

\(y\left( k \right)\) :

Measured system output

\(T_{7}\) :

Exhaust temperature

\(T_{5}\) :

HP turbine temperature

\(c_{i}\) :

Center variable

\(r_{1}\), \(r_{2}\) :

Random variables

\(u\) :

Control vector

\(f(k)\) :

Fault vector

\(\theta\) :

Parameter vector

\(V_{s}\) :

Parity vector

\(r(k)\) :

Residuals vector

\(x\) :

State vector

\(v_{i} (t)\) :

Particle speed

\(N_{npt}\) :

LP turbine rotational speed

\(N_{ngp}\) :

HP turbine rotation speed

References

  1. Rahmoune MB, Hafaifa A, Kouzou A, Chen XiaoQi, Chaibet A (2021) Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling. Math Comput Simul 179:23–47. https://doi.org/10.1016/j.matcom.2020.07.017

    Article  MathSciNet  MATH  Google Scholar 

  2. Kaino Y, Uchida M (2021) Parametric estimation for a parabolic linear SPDE model based on discrete observations. J Stat Plan Inference 211:190–220. https://doi.org/10.1016/j.jspi.2020.05.004

    Article  MathSciNet  MATH  Google Scholar 

  3. Hou G, Gong L, Huang C, Zhang J (2020) Fuzzy modeling and fast model predictive control of gas turbine system. Energy 200:117465. https://doi.org/10.1016/j.energy.2020.117465

    Article  Google Scholar 

  4. Liu R, Pan T, Li Z (2017) Multi-model recursive identification for nonlinear systems with non-uniformly sampling. Clust Comput 20:25–32. https://doi.org/10.1007/s10586-016-0688-0

    Article  Google Scholar 

  5. Zhou D, Huang D, Hao J, Hang Wu, Chang C, Zhang H (2021) Fault diagnosis of gas turbines with thermodynamic analysis restraining the interference of boundary conditions based on STN. Int J Mech Sci 191:106053. https://doi.org/10.1016/j.ijmecsci.2020.106053

    Article  Google Scholar 

  6. Alblawi A (2020) Fault diagnosis of an industrial gas turbine based on the thermodynamic model coupled with a multi feedforward artificial neural networks. Energy Rep 6:1083–1096. https://doi.org/10.1016/j.egyr.2020.04.029

    Article  Google Scholar 

  7. Zhou D, Wei T, Huang D, Li Y, Zhang H (2020) A gas path fault diagnostic model of gas turbines based on changes of blade profiles. Eng Fail Anal 109:104377. https://doi.org/10.1016/j.engfailanal.2020.104377

    Article  Google Scholar 

  8. Li J, Ying Y (2020) Gas turbine gas path diagnosis under transient operating conditions: a steady state performance model based local optimization approach. Appl Therm Eng 170:115025. https://doi.org/10.1016/j.applthermaleng.2020.115025

    Article  Google Scholar 

  9. Benyounes A, Hafaifa A, Guemana M (2016) Gas turbine modelling based on fuzzy clustering algorithm using experimental data. J Appl Artif Intell 30(1):29–51. https://doi.org/10.1080/08839514.2016.1138808

    Article  Google Scholar 

  10. Mehrpanahi A, Payganeh G, Arbabtafti M (2017) Dynamic modeling of an industrial gas turbine in loading and unloading conditions using a gray box method. Energy 120:1012–1024. https://doi.org/10.1016/j.energy.2016.12.012

    Article  Google Scholar 

  11. Hafaifa A, Belhadef R, Guemana M (2014) Modelling of surge phenomena in a centrifugal compressor: experimental analysis for control. Syst Sci Control Eng 2(1):632–641. https://doi.org/10.1080/21642583.2014.956269

    Article  Google Scholar 

  12. Tosarkani BM, Amin SH (2020) A robust optimization model for designing a wastewater treatment network under uncertainty: multi-objective approach. Comput Ind Eng 146:106611. https://doi.org/10.1016/j.cie.2020.106611

    Article  Google Scholar 

  13. Chen L, Huang B, Liu F (2014) Multi-model approach to nonlinear system identification with unknown time delay. IFAC Proc Vol 47(3):9388–9393. https://doi.org/10.3182/20140824-6-ZA-1003.00529

    Article  Google Scholar 

  14. Hadroug N, Hafaifa A, Batel N, Abdellah K, Chaibet A (2018) Active fault tolerant control based on a neuro fuzzy inference system applied to a two shafts gas turbine. J Appl Artif Intell 32(6):515–540. https://doi.org/10.1080/08839514.2018.1483114

    Article  Google Scholar 

  15. Hackney R, Nikolaidis T, Pellegrini A (2020) A method for modelling compressor bleed in gas turbine analysis software. Appl Therm Eng 172:115087. https://doi.org/10.1016/j.applthermaleng.2020.115087

    Article  Google Scholar 

  16. Zribi A, Chtourou M, Djemel M (2017) Multiple model reduction approach using gap metric and stability margin for control nonlinear systems. Int J Control Autom Syst 15:267–273. https://doi.org/10.1007/s12555-015-0131-y

    Article  Google Scholar 

  17. Nuerlan A, Wang P, Rizwan-uddin FZ (2020) A neural network based inverse system control strategy to decouple turbine power in multi-reactor and multi-turbine nuclear power plant. Prog Nucl Energy 129:103500. https://doi.org/10.1016/j.pnucene.2020.103500

    Article  Google Scholar 

  18. Sanaye S, Hosseini S (2020) Prediction of blade life cycle for an industrial gas turbine at off-design conditions by applying thermodynamics, turbo-machinery and artificial neural network models. Energy Rep 6:1268–1285. https://doi.org/10.1016/j.egyr.2020.05.008

    Article  Google Scholar 

  19. Chen S, Rui H (2018) A two-grid decoupled algorithm for fracture models. Comput Math Appl 76(5):1161–1173. https://doi.org/10.1016/j.camwa.2018.06.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Nianci Lu, Pan L, Liu Z, Lee KY, Song Y, Si P (2020) Dynamic modeling of thermal-supply system for two-by-one combined-cycle gas and steam turbine unit. Fuel Process Technol 209:106549. https://doi.org/10.1016/j.fuproc.2020.106549

    Article  Google Scholar 

  21. Liu X, Shi Y (2017) Daniela Constantinescu, Robust distributed model predictive control of constrained dynamically decoupled nonlinear systems: a contraction theory perspective. Syst Control Lett 105:84–91. https://doi.org/10.1016/j.sysconle.2017.05.004

    Article  MATH  Google Scholar 

  22. Wiese AP, Blom MJ, Manzie C, Kitchener A (2015) Model reduction and MIMO model predictive control of gas turbine systems. Control Eng Pract 45:194–206. https://doi.org/10.1016/j.conengprac.2015.09.015

    Article  Google Scholar 

  23. Yang XL, Hong Tao Wu, Chen B, Kang SZ, Cheng SL (2019) Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation. J Sound Vib 439:398–412. https://doi.org/10.1016/j.jsv.2018.10.007

    Article  Google Scholar 

  24. Li D, Guo W, Lerch A, Li Y, Wang L, Qidi Wu (2021) An adaptive particle swarm optimizer with decoupled exploration and exploitation for large scale optimization. Swarm Evol Comput 60:100789. https://doi.org/10.1016/j.swevo.2020.100789

    Article  Google Scholar 

  25. Hafaifa A, Guemana M, Daoudi A (2015) Vibration supervision in gas turbine based on parity space approach to increasing efficiency. J Vib Control 21(8):1622–1632. https://doi.org/10.1177/1077546313499927

    Article  Google Scholar 

  26. Afzal A, Ramis MK (2020) Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics. J Energy Storage 32:101815. https://doi.org/10.1016/j.est.2020.101815

    Article  Google Scholar 

  27. Kaiping Qu, Zheng B, Tao Yu, Li H (2019) Convex decoupled-synergetic strategies for robust multi-objective power and gas flow considering power to gas. Energy 168:753–771. https://doi.org/10.1016/j.energy.2018.11.083

    Article  Google Scholar 

  28. Hadroug N, Hafaifa A, Abdellah K, Chaibet A (2017) Dynamic model linearization of two shafts gas turbine via their input/output data around the equilibrium points. Energy 120:488–497. https://doi.org/10.1016/j.energy.2016.11.099

    Article  Google Scholar 

  29. Mohseni SS, Yazdanpanah MJ, Noei AR (2017) Model order reduction of nonlinear models based on decoupled multi-model via trajectory piecewise linearization. Int J Control Autom Syst 15:2088–2098. https://doi.org/10.1007/s12555-016-0536-2

    Article  Google Scholar 

  30. Duvall M, Riggs JB, Lee P (2001) Multi-model decoupled generic model control. Control Eng Pract 9(5):471–481. https://doi.org/10.1016/S0967-0661(01)00007-7

    Article  Google Scholar 

  31. Touhidul SM, Mustafa JN, Ghysels G, Huysmans M (2020) Integrated bayesian multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling. Environ Model Softw 126:104654. https://doi.org/10.1016/j.envsoft.2020.104654

    Article  Google Scholar 

  32. Hou G, Gong L, Yang Z, Zhang J (2020) Multi-objective economic model predictive control for gas turbine system based on quantum simultaneous whale optimization algorithm. Energy Convers Manag 207:112498. https://doi.org/10.1016/j.enconman.2020.112498

    Article  Google Scholar 

  33. Wang H, Xie L (2021) Fuzzy modeling of non-uniformly sampling nonlinear systems based on clustering method and convergence analysis. J Syst Sci Complex 34:502–519. https://doi.org/10.1007/s11424-020-9119-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang XW, Liu H, LiangPing Tu (2020) A modified particle swarm optimization for multimodal multi-objective optimization. Eng Appl Artif Intell 95:103905. https://doi.org/10.1016/j.engappai.2020.103905

    Article  Google Scholar 

  35. Yuqiao Zheng Lu, Zhang YP, He Z (2020) Multi objective structural optimization of a wind turbine tower. J Shanghai Jiaotong Univ (Chin Ed) 25:538–544. https://doi.org/10.1007/s12204-020-2190-3

    Article  Google Scholar 

  36. Tolouei H, Aliyari SM (2021) Nonlinear parity approach to fault detection in nonlinear systems using unknown input observer. Iran J Sci Technol Trans Electr Eng 45:321–333. https://doi.org/10.1007/s40998-020-00360-2

    Article  Google Scholar 

  37. Nourani V, Elkiran G, Abdullahi J (2020) Multi-step ahead modeling of reference evapotranspiration using a multi-model approach. J Hydrol 581:124434. https://doi.org/10.1016/j.jhydrol.2019.124434

    Article  Google Scholar 

  38. Huang D, Jianguo Xu, Chen R, Meng H (2020) Large eddy simulations of turbulent combustion of kerosene-air in a dual swirl gas turbine model combustor at high pressures. Fuel 282:11882015. https://doi.org/10.1016/j.fuel.2020.118820

    Article  Google Scholar 

  39. Karimi MS, Raisee M, Salehi S, Hendrick P, Nourbakhsh A (2021) Robust optimization of the NASA C3X gas turbine vane under uncertain operational conditions. Int J Heat Mass Transf 164:120537. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120537

    Article  Google Scholar 

  40. Wan X, Tong C, Meng S, Lan T (2020) Dynamic process monitoring based on a time-serial multi-block modeling approach. J Process Control 89:22–29. https://doi.org/10.1016/j.jprocont.2020.03.007

    Article  Google Scholar 

  41. Chau TTT, Ailliot P, Monbet V (2021) An algorithm for non-parametric estimation in state–space models. Comput Stat Data Anal 153:107062. https://doi.org/10.1016/j.csda.2020.107062

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang X, Zhang H, Bai S, Yue Y (2021) Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method. Acta Astronaut 178:595–605. https://doi.org/10.1016/j.actaastro.2020.09.040

    Article  Google Scholar 

  43. Xue Z, Li S (2005) Multi-model predictive control with local constraints based on model switching. J Control Theory Appl 3:150–156. https://doi.org/10.1007/s11768-005-0008-3

    Article  MathSciNet  MATH  Google Scholar 

  44. Nath AG, Udmale SS, Singh SK (2021) Role of artificial intelligence in rotor fault diagnosis: a comprehensive review. Artif Intell Rev 54:2609–2668. https://doi.org/10.1007/s10462-020-09910-w

    Article  Google Scholar 

  45. Djeddi C, Hafaifa A, Iratni A, Hadroug N, Chen XiaoQi (2021) Robust diagnosis with high protection to gas turbine failures identification based on a fuzzy neuro inference monitoring approach. J Manuf Syst 59:190–213. https://doi.org/10.1016/j.jmsy.2021.02.012

    Article  Google Scholar 

  46. Kang DW, Kim TS (2018) Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation. Appl Energy 212:1345–1359. https://doi.org/10.1016/j.apenergy.2017.12.126

    Article  Google Scholar 

  47. Farahi Moshir M, Ahmadi M, Dabir B (2021) Model-based water-flooding optimization using multi-objective approach for efficient reservoir management. J Pet Sci Eng 196:107988. https://doi.org/10.1016/j.petrol.2020.107988

    Article  Google Scholar 

Download references

Acknowledgements

This article is the result of a work on the identification of model variables of a twin-shaft gas turbine using the techniques of local decoupled state multi-models, for their use in the diagnosis of faults of this rotating machine with a parity space approach, based on the input/output measurements collected on the turbine under examination. This work is supported and carried out by the joint research team on gas turbines with the applied automation and industrial diagnosis laboratory, University of Djelfa, Algeria. However, the authors express their sincere thanks to the General Directorate of Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hafaifa.

Appendix

Appendix

1.1 Obtained gas turbine state model

The sub-models L2:

$$ \left\{ {\begin{array}{*{20}c} {A_{1} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - 1.0014} & { - {0}{\text{.2364}}} \\ \end{array} } \right],B_{1} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{1} = \left[ {\begin{array}{*{20}c} { - {0}{\text{.0020}}} & {{0}{\text{.0086}}} \\ { - {0}{\text{.0029}}} & {{0}{\text{.0124}}} \\ { - {0}{\text{.0226}}} & {{0}{\text{.0803}}} \\ { - {0}{\text{.0127}}} & {{0}{\text{.0368}}} \\ \end{array} } \right],D_{1} = \left[ {\begin{array}{*{20}c} {{1}{\text{.2763}}} \\ {{1}{\text{.2107}}} \\ {{9}{\text{.4792}}} \\ {{6}{\text{.1181}}} \\ \end{array} } \right]} \\ {A_{2} = \left[ {\begin{array}{*{20}c} {0} & {1} \\ {{0}{\text{.5152}}} & { - {0}{\text{.3829}}} \\ \end{array} } \right],B_{2} = \left[ {\begin{array}{*{20}c} 0 \\ 1 \\ \end{array} } \right],C_{2} = \left[ {\begin{array}{*{20}c} {{0}{\text{.0551}}} & {{0}{\text{.0284}}} \\ {{0}{\text{.0624}}} & {{ 0}{\text{.0676}}} \\ {{ 0}{\text{.6094}}} & {{0}{\text{.6500}}} \\ {{0}{\text{.3075}}} & {{0}{\text{.2969 }}} \\ \end{array} } \right],D_{2} = \left[ {\begin{array}{*{20}c} {{2}{\text{.9163}}} \\ {{1}{\text{.9804}}} \\ {{16}{\text{.1059}}} \\ {{13}{\text{.1460}}} \\ \end{array} } \right]} \\ \end{array} } \right. $$

The sub-models L3:

$$ \left\{ {\begin{array}{*{20}c} {A_{1} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ {{0}{\text{.0181}}} & { - {0}{\text{.1221}}} \\ \end{array} } \right],B_{1} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{1} = \left[ {\begin{array}{*{20}c} {{0}{\text{.0184}}} & { - {0}{\text{.0097}}} \\ { - {0}{\text{.0100 }}} & { - {0}{\text{.0055}}} \\ {{0}{\text{.1380}}} & { - {0}{\text{.1303}}} \\ {{0}{\text{.1258}}} & { - {0}{\text{.0317}}} \\ \end{array} } \right],D_{1} = \left[ {\begin{array}{*{20}c} {{1}{\text{.2880}}} \\ {{1}{\text{.2342}}} \\ {{9}{\text{.5753}}} \\ {{6}{\text{.1147}}} \\ \end{array} } \right]} \\ {A_{2} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ {{0}{\text{.1365}}} & { - {0}{\text{.2635}}} \\ \end{array} } \right],B_{2} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{2} = \left[ {\begin{array}{*{20}c} { - {0}{\text{.0358}}} & {{0}{\text{.0858}}} \\ {{ 0}{\text{.0581}}} & {{0}{\text{.1546}}} \\ { - {0}{\text{.0088}}} & {{1}{\text{.4640}}} \\ { - {0}{\text{.0772}}} & {{0}{\text{.4979}}} \\ \end{array} } \right],D_{2} = \left[ {\begin{array}{*{20}c} {{2}{\text{.7040}}} \\ {{1}{\text{.8058}}} \\ {{15}{\text{.0291}}} \\ {{12}{\text{.3068}}} \\ \end{array} } \right]} \\ {A_{3} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ {{0}{\text{.2428}}} & { - {0}{\text{.2369}}} \\ \end{array} } \right],B_{3} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{3} = \left[ {\begin{array}{*{20}c} {{0}{\text{.4731}}} & {{ 1}{\text{.5000}}} \\ {{0}{\text{.6655}}} & {{1}{\text{.9180}}} \\ {{6}{\text{.9454}}} & {{ 8}{\text{.9683}}} \\ {{3}{\text{.7276}}} & {{3}{\text{.4792}}} \\ \end{array} } \right],D_{3} = \left[ {\begin{array}{*{20}c} {{ 0}{\text{.7236}}} \\ { - {0}{\text{.6001}}} \\ {{0}{\text{.3148}}} \\ {{4}{\text{.0464}}} \\ \end{array} } \right]} \\ \end{array} } \right. $$

The sub-models L4:

$$ \left\{ {\begin{array}{*{20}c} {A_{1} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - {0}{\text{.1081}}} & { - {0}{\text{.3903}}} \\ \end{array} } \right],B_{1} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{1} = \left[ {\begin{array}{*{20}c} {{0}{\text{.1286}}} & {{0}{\text{.3375}}} \\ {{0}{\text{.1062}}} & {{0}{\text{.5097}}} \\ {{0}{\text{.7245}}} & {{2}{\text{.6477 }}} \\ {{0}{\text{.9639}}} & {{ 2}{\text{.0252}}} \\ \end{array} } \right],D_{1} = \left[ {\begin{array}{*{20}c} {{3}{\text{.3042}}} \\ {{1}{\text{.8189 }}} \\ {{18}{\text{.1980}}} \\ {{13}{\text{.1503}}} \\ \end{array} } \right]} \\ {A_{1} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - {0}{\text{.0783 }}} & { - {0}{\text{.3716}}} \\ \end{array} } \right],B_{1} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{1} = \left[ {\begin{array}{*{20}c} { - {0}{\text{.3499 }}} & { - {0}{\text{.3726}}} \\ { - {0}{\text{.1752 }}} & {{0}{\text{.0051}}} \\ { - {2}{\text{.5110}}} & {{0}{\text{.0391}}} \\ { - {0}{\text{.1959}}} & {{2}{\text{.1260 }}} \\ \end{array} } \right],D_{1} = \left[ {\begin{array}{*{20}c} {{1}{\text{.4521}}} \\ {{1}{\text{.7159}}} \\ {{9}{\text{.3378}}} \\ {{6}{\text{.8235}}} \\ \end{array} } \right]} \\ {A_{1} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - {0}{\text{.0801}}} & { - {0}{\text{.2980}}} \\ \end{array} } \right],B_{1} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{1} = \left[ {\begin{array}{*{20}c} {{0}{\text{.1892}}} & {{0}{\text{.2152}}} \\ {{ 0}{\text{.0961}}} & { - {0}{\text{.0819 }}} \\ {{2}{\text{.0746}}} & { - {0}{\text{.4899 }}} \\ {{0}{\text{.2079}}} & { - {1}{\text{.6416}}} \\ \end{array} } \right],D_{1} = \left[ {\begin{array}{*{20}c} {{1}{\text{.0837}}} \\ {{0}{\text{.9147}}} \\ {{ 9}{\text{.0677}}} \\ {{5}{\text{.4967 }}} \\ \end{array} } \right]} \\ {A_{1} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - {0}{\text{.0525}}} & {{0}{\text{.0023}}} \\ \end{array} } \right],B_{1} = \left[ {\begin{array}{*{20}c} {0} \\ {1} \\ \end{array} } \right],C_{1} = \left[ {\begin{array}{*{20}c} {{0}{\text{.5542}}} & { - {0}{\text{.1214}}} \\ {{0}{\text{.5514}}} & {{ 0}{\text{.0574}}} \\ {{4}{\text{.6213 }}} & {{1}{\text{.5489}}} \\ {{ 3}{\text{.2510 }}} & { - {0}{\text{.1525}}} \\ \end{array} } \right],D_{1} = \left[ {\begin{array}{*{20}c} {{1}{\text{.9044}}} \\ {{ 1}{\text{.2023}}} \\ {{ 8}{\text{.3144}}} \\ {{7}{\text{.6873}}} \\ \end{array} } \right]} \\ \end{array} } \right. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aissat, S., Hafaifa, A., Iratni, A. et al. Exploitation of multi-models identification with decoupled states in twin shaft gas turbine variables for its diagnosis based on parity space approach. Int. J. Dynam. Control 10, 25–48 (2022). https://doi.org/10.1007/s40435-021-00804-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00804-5

Keywords

Navigation