Skip to main content
Log in

Discrete controller with state and disturbance estimation for robust performance of DC/DC Buck converter

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents discrete robust control of DC/DC buck converter. Regulating the output voltage of the DC/DC converter digitally, irrespective of line voltage and load variation has been driving motivation for investigation of discrete sliding mode control. Average model is used to design discrete sliding mode controller. Extended state observer is designed to estimate state and disturbance of the discrete model. Switch-free controller is designed, estimated value of disturbance is used in controller to compensate its effect. The significant contribution of this paper includes assurance of robust performance by compensating disturbance contributed by load, parameter and supply variations. Proof of existence of sliding modes and stability also has been contribution. It is shown that the proposed method provides robust voltage regulation both in simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Rashid MH (1993) Power Electronics: Circuits, devices, and applications. Prentice Hall, USA

    Google Scholar 

  2. Maity S, Suraj Y (2012) Analysis and modeling of an FFHC-controlled DC-DC buck converter suitable for wide range of operating conditions. IEEE Trans Power Electron 27(12):4914

    Article  Google Scholar 

  3. Nayak G, Nath S (2020) Decoupled average current control of coupled inductor single-input dual-output buck converter. IEEE J Emerg Sel Top Ind Electron 1(2):152

    Article  Google Scholar 

  4. Chan MP, Mok PK (2011) Design and implementation of fully integrated digitally controlled current-mode buck converter. IEEE Trans Circuits and Syst I: Regul Papers 58(8):1980

    Article  MathSciNet  Google Scholar 

  5. Sun J, Bass RM (1999) Modeling and practical design issues for average current control, in APEC’99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No. 99CH36285), vol. 2 , 2:980–986 (IEEE, 1999)

  6. Dixon L (1990) Average current mode control of switching power supplies, In Unitrode Power Supply Design Seminar Handbook (Unitrode Corp., 1990), pp 5–1

  7. Yan Y, Lee FC, Mattavelli P (2012) Comparison of small signal characteristics in current mode control schemes for point-of-load buck converter applications. IEEE Trans Power Electron 28(7):3405

    Article  Google Scholar 

  8. Forsyth A, Mollov S (1998) Modelling and control of DC-DC converters. Power Eng J 12(5):229

    Article  Google Scholar 

  9. Kassakian JG, Schlecht MF, Verghese GC (2000) Principles of power electronics. Graphis

  10. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electron 40(1):2

    Article  Google Scholar 

  11. Utkin V (1977) Variable structure systems with sliding modes. IEEE Trans Autom control 22(2):212

    Article  MathSciNet  Google Scholar 

  12. Young KD, Utkin VI, Ozguner U (1999) A control engineers guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328

    Article  Google Scholar 

  13. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23

    Article  Google Scholar 

  14. Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems. CRC Press, USA

    Google Scholar 

  15. Sabanovic A et al (1983) Buck converter regulator operating in the sliding mode, In: proceedings of PCI

  16. Dominguez F, Fossas E, Martinez L (1994) Stability analysis of a buck converter with input filter via sliding-mode approach, In: Proceedings of IECON 94-20th Annual Conference of IEEE Industrial Electronics

  17. Zhao Y, Qiao W, Ha D (2013) A sliding-mode duty-ratio controller for DC/DC buck converters with constant power loads. IEEE Trans Ind Appl 50(2):1448

    Article  Google Scholar 

  18. Tan SC, Lai YM, Cheung MK, Tse CK (2005) On the practical design of a sliding mode voltage controlled buck converter. IEEE Trans Power Electron 20(2):425

    Article  Google Scholar 

  19. Silva-Ortigoza R, Hernández-Guzmán VM, Antonio-Cruz M, Munoz-Carrillo D (2014) DC/DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Trans Power Electron 30(2):1076

    Article  Google Scholar 

  20. Martinez-Salamero L, García G, Orellana M, Lahore C, Estibals B, Alonso C, Carrejo CE (2013) Analysis and design of a sliding-mode strategy for start-up control and voltage regulation in a buck converter. IET Power Electron 6(1):52

    Article  Google Scholar 

  21. Mahmud MH, Zhao Y (2018) Sliding mode duty cycle control with current balancing algorithm for an interleaved buck converter-based PV source simulator. IET Power Electron 11(13):2117

    Article  Google Scholar 

  22. Qi W, Li S, Tan SC, Hui SR (2017) Parabolic-modulated sliding-mode voltage control of a buck converter. IEEE Trans Ind Electron 65(1):844

    Article  Google Scholar 

  23. Tan SC, Lai Y, Tse C, Cheung MK (2005) A fixed-frequency pulsewidth modulation based quasi-sliding-mode controller for buck converters. IEEE Trans Power Electron

  24. Repecho V, Biel D, Ramos-Lara R, Vega PG (2017) Fixed-switching frequency interleaved sliding mode eight-phase synchronous buck converter. IEEE Trans Power Electron 33(1):676

    Article  Google Scholar 

  25. Jafarian M, Nazarzadeh J (2011) Time-optimal sliding-mode control for multi-quadrant buck converters. IET Power Electron 4(1):143

    Article  Google Scholar 

  26. Shen L, Lu DDC, Li C (2015) Adaptive sliding mode control method for DC-DC converters. IET Power Electron 8(9):1723

    Article  Google Scholar 

  27. Labbe B, Allard B, Lin-Shi X, Chesneau D (2012) An integrated sliding-mode buck converter with switching frequency control for battery-powered applications. IEEE Trans Power Electron 28(9):4318

    Article  Google Scholar 

  28. Mazumder SK, Nayfeh AH, Borojevic A (2002) Robust control of parallel DC-DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans Power Electron 17(3):428

    Article  Google Scholar 

  29. Milosavljevic D (1985) General conditions for existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems. Autom Remote Control 46:307

    MATH  Google Scholar 

  30. Gao W, Wang Y, Homaifa A (1995) Discrete-time variable structure control systems. IEEE Trans Ind Electron 42(2):117

    Article  Google Scholar 

  31. Yang J, Cui H, Li S, Zolotas A (2017) Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Trans Circuit Syst I: Regul Papers 65(2):832

    Article  Google Scholar 

  32. Sira-Ramirez H, Oliver-Salazar MA (2012) On the robust control of buck-converter DC-motor combinations. IEEE Trans Power Electron 28(8):3912

    Article  Google Scholar 

  33. Sun J, Yang J, Zheng WX, Li S (2016) GPIO-based robust control of nonlinear uncertain systems under time-varying disturbance with application to DC-DC converter. IEEE Tran Circuits Syst II: Express Br 63(11):1074

    Article  Google Scholar 

  34. Zhang C, Wang J, Li S, Wu B, Qian C (2014) Robust control for PWM-based DC-DC buck power converters with uncertainty via sampled-data output feedback. IEEE Trans Power Electron 30(1):504

    Article  Google Scholar 

  35. Xiong F, Wu J, Liu Z, Hao L (2017) Current sensorless control for dual active bridge DC-DC converter with estimated load-current feedforward. IEEE Trans Power Electron 33(4):3552

    Article  Google Scholar 

  36. Wang J, Li S, Yang J, Wu B (2016) Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation based DC-DC buck converters with mismatched load disturbances. IET Power Electron 9(9):1995

    Article  Google Scholar 

  37. Lu J, Savaghebi M, Guan Y, Vasquez JC, Ghias AM, Guerrero JM (2018) A Reduced-Order Enhanced State Observer Control of DC-DC Buck Converter. IEEE Access 6:56184

    Article  Google Scholar 

  38. Lu J, Golestan S, Savaghebi M, Vasquez JC, Guerrero JM, Marzabal A (2017) An enhanced state observer for DC-link voltage control of three-phase AC/DC converters. IEEE Trans Power Electron 33(2):936

    Article  Google Scholar 

  39. Schirone L, Celani F, Macellari M (2012) Discrete-time control for DC-AC converters based on sliding mode design. IET Power Electron 5(6):833

    Article  Google Scholar 

  40. Oettmeier FM, Neely J, Pekarek S, DeCarlo R, Uthaichana K (2008) MPC of switching in a boost converter using a hybrid state model with a sliding mode observer. IEEE Trans Ind Electron 56(9):3453

    Article  Google Scholar 

  41. Kim SK, Kim JS, Park CR, Lee YI (2013) Output-feedback model predictive controller for voltage regulation of a DC/DC converter. IET Control Theory Appl 7(16):1959

    Article  MathSciNet  Google Scholar 

  42. Yang J, Zheng WX, Li S, Wu B, Cheng M (2015) Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer. IEEE Trans Ind Electron 62(9):5807

    Article  Google Scholar 

  43. Nguyen DD, Fujita G, Bui-Dang Q, Ta MC (2018) Reduced-order observer-based control system for dual-active-bridge DC/DC converter. IEEE Trans Ind Appl 54(4):3426

    Article  Google Scholar 

  44. Dashtestani A, Bakkaloglu B (2014) A fast settling oversampled digital sliding-mode DC-DC converter. IEEE Trans Power Electron 30(2):1019

    Article  Google Scholar 

  45. Vidal-Idiarte E, Marcos-Pastor A, Giral R, Calvente J, Martinez-Salamero L (2017) Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electron 10(13):1714

    Article  Google Scholar 

  46. Samantaray J, Chakrabarty S (2018) Digital Implementation of Sliding Mode Controllers with DC-DC Buck Converter System, In: 2018 15th International Workshop on Variable Structure Systems (VSS) (IEEE, 2018), pp 255–260

  47. Vorperian V (1989) Simplified Analysis of PWM Converters Using the PWM Switch Parts I & II Continues and Discontinuous Conduction Mode, In: Proceedings of VPEC Seminar (1989), pp. 1–20

  48. Hsu SP, Brown A, Rensink L, Middlebrook R (1979) Modelling and analysis of switching DC-to-DC converters in constant-frequency current-programmed mode, In: 1979 IEEE Power Electronics Specialists Conference (IEEE, 1979), pp. 284–301

  49. Utkin V, Drakunov S (1989) On discrete-time sliding modes. IFAC Proc Vol 22(3):273

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge Prof. U. M. Mate for support of her laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajkumar Sawai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawai, S., Kurode, S. & Tamhane, B. Discrete controller with state and disturbance estimation for robust performance of DC/DC Buck converter. Int. J. Dynam. Control 10, 96–106 (2022). https://doi.org/10.1007/s40435-021-00802-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00802-7

Keywords

Navigation