Skip to main content
Log in

Adaptive observer based-robust synchronization of switched fractional Rikitake systems with input nonlinearity

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper mainly focuses on the robust synchronization of switched fractional-order improved Rikitake two-disk dynamo system which is a more general topology of the original Rikitake system. In particular, we first explore and design a simplified model very close to a real geophysical process which is described by an orbiting point, primarily using concepts from dynamical system theory. Dynamical properties, including symmetry, dissipation, stability of equilibria, Lyapunov exponents, and bifurcation, are analyzed on the basis of theoretical analysis and numerical simulation. Secondly, some less stringent conditions for adaptive control are derived when the system is subjected to external disturbances, parametric uncertainties and nonlinear input. The convergence of the state space trajectories with the overall robust asymptotic stability of the closed-loop system is obtained using the Lyapunov theory. To highlight our contribution, an illustrative example is presented to show the effectiveness and applicability of the proposed synchronization scheme. This proposal derives a systematic procedure for the design and control of a wide range of electromechanical systems. The results obtained in this work have not yet been reported in the literature to the best of the authors’ knowledge and thus deserve dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Matignon D (1996) Stability results for fractional differential equations with applications to control processing. Comput Eng Syst Appl 2:963–968

    Google Scholar 

  2. Wang Y (2018) Dynamic analysis and synchronization of conformable fractional-order chaotic systems. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2018-12300-y

    Article  Google Scholar 

  3. Li C, Deng W (2007) Remarks on fractional derivatives. Appl Math Comput 187:777–784. https://doi.org/10.1016/j.amc.2006.08.163

    Article  MathSciNet  MATH  Google Scholar 

  4. Petréas I (2011) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  5. Mahmoud GM, Mansour EA, Tarek MAE (2016) Active control technique of fractional-order chaotic complex systems. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2016-16200-x

    Article  Google Scholar 

  6. Heaviside O (2008) Electromagnetic theory, cosimo. Cambridge University, Cambridge

    Google Scholar 

  7. Montesinos-Garcia JJ, Guerra RM (2017) A fractional exponential polinomial state observer in secure communications. In: 2017 14th International conference on electrical engineering, computing science and automatic control (CCE), pp 1–6. IEEE

  8. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific

    Book  Google Scholar 

  9. Xu Y, Wang H, Li Y, Pei B (2014) Image encryption based on synchronization of fractional chaotic systems. Commun Nonlinear Sci Numer Simul 19:3735–3744. https://doi.org/10.1016/j.cnsns.2014.02.029

    Article  MathSciNet  MATH  Google Scholar 

  10. Li C, Chen G (2004) Chaos in the fractional order chen system and its control. Chaos Soli Fract 22:549–554. https://doi.org/10.1016/j.chaos.2004.02.035

    Article  MATH  Google Scholar 

  11. Pourmahmood MA (2012) Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J Comput Nonlinear Dyn 7:021010. https://doi.org/10.1115/1.4005323

    Article  Google Scholar 

  12. Atanackovic T, Budincevic M, Pilipovic S (2005) On a fractional distributed-order oscillator. J Phys A Math Gen 38:6703. https://doi.org/10.1088/0305-4470/38/30/006

    Article  MathSciNet  MATH  Google Scholar 

  13. Tavazoei MS, Haeri M (2007) A necessary condition for double scroll attractor existence in fractional-order systems. Phys Lett A 367:102–113. https://doi.org/10.1016/j.physleta.2007.05.081

    Article  MATH  Google Scholar 

  14. Li C (2006) Projective synchronization in fractional order chaotic systems and its control. Prog Theor Phys 115(3):661–666

    Article  Google Scholar 

  15. Peng Y, Sun K, He S (2020) Synchronization for the integer-order and fractional-order chaotic maps based on parameter estimation with JAYA-IPSO algorithm. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-020-00340-9

    Article  Google Scholar 

  16. Berwald L (1947) Ueber Systeme von gew´lohnlichen Differentialgleichungen zweiter Ordnung deren Integralkurven mit dem System der geraden Linien topologisch aequivalent sind Ann. Math 48:193–215

    MathSciNet  MATH  Google Scholar 

  17. Bringuier E (2003) Electrostatic charges in v*B fields and the phenomenon of induction. Eur J Phys 24:21

    Article  MathSciNet  Google Scholar 

  18. Rikitake T (1958) Oscillations of a system of disk dynamos. Proc Camb Phil Soc 54:89–105. https://doi.org/10.1017/S0305004100033223

    Article  MathSciNet  MATH  Google Scholar 

  19. Tudoran RM, Girban A (2010) A hamiltonian look at the Rikitake two-disk dynamo system. Nonlinear Anal Real World Appl 11:2888–2895. https://doi.org/10.1016/j.nonrwa.2009.10.012

    Article  MathSciNet  MATH  Google Scholar 

  20. Wei Z, Zhang W, Wang Z, Yao M (2015) Hidden attractors and dynamical behaviors in an extended Rikitake system. Int J Bifur Chaos 25:1550028. https://doi.org/10.1142/S0218127415500285

    Article  MathSciNet  MATH  Google Scholar 

  21. Cortini M, Barton CC (1994) Chaos in geomagnetic reversal records: a comparison between Earth’s magnetic field data and model disk dynamo data. J Geophys Res Solid Earth 99(B9):18021–18033. https://doi.org/10.1029/94jb01237

    Article  Google Scholar 

  22. Gholipour Y, Mola M (2014) Investigation stability of Rikitake system. J Contr Eng Tech 4:82–85

    Google Scholar 

  23. Harb A, Ayoub N (2013) Nonlinear control of chaotic Rikitake two-disk dynamo. Int J Nonlinear Sci 15:45–50

    MathSciNet  MATH  Google Scholar 

  24. Javid M, Nyamoradi N (2013) Numerical chaotic behavior of the fractional Rikitake system. World J Model Simul 9:120–129

    Google Scholar 

  25. Al-khedhairi A (2020) Dynamical analysis and chaos synchronization of a fractional-order novel financial model based on Caputo-Fabrizio derivative. Eur Phys J Plus 134:532–552. https://doi.org/10.1140/epjp/i2019-12878-4

    Article  Google Scholar 

  26. Xiang-Jun W, Jing-Sen L, Guan-Rong C (2008) Chaos synchronization of Rikitake chaotic attractor using the passive control technique. Nonlinear Dyn 53:45–53. https://doi.org/10.1007/s11071-007-9294-2

    Article  MathSciNet  Google Scholar 

  27. Xiao-jun L, Xian-feng L, Ying-xiang C, Jian-gang Z (2008) Chaos and chaos synchronism of the Rikitake two-disk dynamo. In: 2008 Fourth international conference on natural computation. 4, pp 613–617

  28. Wu X, Wang H (2010) A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn 61(3):407–417. https://doi.org/10.1007/s11071-010-9658-x

    Article  MathSciNet  MATH  Google Scholar 

  29. Vembarasan V, Balasubramaniam P (2013) Chaotic synchronization of Rikitake system based on TS fuzzy control techniques. Nonlinear Dyn 74:31–44

    Article  MathSciNet  Google Scholar 

  30. Pang W, Wu Z, Xiao Y, Jiang C (2020) Chaos control and synchronization of a complex rikitake dynamo model. Entropy 22(6):671. https://doi.org/10.3390/e22060671

    Article  MathSciNet  Google Scholar 

  31. Wang Y, Lei T, Zhang X, Li C, Jafari S (2020) Hyperchaotic oscillation in the deformed Rikitake two-disc dynamo system induced by memory effect. Complexity. https://doi.org/10.1155/2020/8418041

    Article  MATH  Google Scholar 

  32. Weidman CD, Krider EP (1985) The amplitude spectra of lightning radiation fields in the interval from 1 to 20MHz. Radio Sci 21(6):57–60. https://doi.org/10.1029/RS021i006p00964

    Article  Google Scholar 

  33. Podgorski AS, Dunn J, Yeo R (1991) Study of picosecond rise time in human-generated ESD. Proc. IEEE Int. Symp. on EMC, Cherry Hill, NJ, August 13–15

  34. Podgorski AS (2003) Sources of electromagnetic disturbances and emi/emc/emp testing methods in the frequency range up to 100 Ghz. In: XIII International conference on electromagnetic disturbances. pp 1–6

  35. Kammogne STA, Kengne R, Fotsin HB (2017) Dynamics and improved robust adaptive control strategy for the finite time synchronization of uncertain nonlinear systems. Int J Syst Dyn Appl 6(4):34–62

    Google Scholar 

  36. Alain KST, Azar AT, Kengne R, Fotsin HB (2020) Stability analysis and robust synchronization of fractional order modified Colpitts oscillators. Int J Auto Cont 14(1):52–79

    Article  Google Scholar 

  37. Lin H, Antsaklis PJ (2009) Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans Automat Control 54(2):308–322

    Article  MathSciNet  Google Scholar 

  38. Tanwani A, Liberzon D (2008) Invertibility of nonlinear switched systems. In: Proc. 47th IEEE Conf. on decision and control, pp 286–291

  39. Millerioux G, Daafouz J (2004) Input independent chaos synchronization of switched systems. IEEE Trans Autom Cont 49:1182–1187. https://doi.org/10.1109/TAC.2004.831118

    Article  MathSciNet  MATH  Google Scholar 

  40. Yu W, Cao J, Yuan K (2008) Synchronization of switched system and application in communication. Phys Lett A 372:4438–4445. https://doi.org/10.1016/j.physleta.2008.04.030

    Article  MATH  Google Scholar 

  41. Rui P, Lei Z (2017) Synchronization of nonlinear switched systems based on sampled-data. 36th Chinese Control Conference (CCC)

  42. Park JH, Lee TH (2014) Finite-time adaptive synchronization of one side switching chaotic systems. Comput Sci Comput Intel 2:303–304. https://doi.org/10.1109/CSCI.2014.145

    Article  Google Scholar 

  43. Kammogne STA, Kountchou MN, Kengne R et al (2020) Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances. Frontiers Inf Technol Electron Eng 21(9):1369–1386. https://doi.org/10.1361/FITEE.1900430

    Article  Google Scholar 

  44. Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1):3–22. https://doi.org/10.1023/A:1016592219641

    Article  MathSciNet  MATH  Google Scholar 

  45. Li C, Hu W, Sprott JC, Wang X (2015) Multistability in symmetric chaotic systems. Eur Phys J Spec Top 224(8):1493–1506. https://doi.org/10.1140/epjst/e2015-02475-x

    Article  Google Scholar 

  46. Sachin B, Varsha DG (2011) A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J Fract Calc Appl 1(5):1–9

    MATH  Google Scholar 

  47. Buscarino A, Fortuna L, Frasca M, Sciuto G (2014) A concise guide to chaotic electronic circuits. Springer, Berlin. https://doi.org/10.1007/978-3-319-05900-6

    Book  MATH  Google Scholar 

  48. Hammouch Z, Mekkaoui T (2018) Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system. Complex Intell Syst 4:251–260. https://doi.org/10.1007/s40747-018-0070-3

    Article  MATH  Google Scholar 

  49. Liu CX (2011) Fractional-order chaotic circuit theory and applications. Xian Jiaotong University Press, Xian

    Google Scholar 

  50. Daafouz J, Riedinger P, Iung C (2002) Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans Autom Control 47(11):1883–1887. https://doi.org/10.1109/tac.2002.804474

    Article  MathSciNet  MATH  Google Scholar 

  51. Li J, Yang X, Wu J (2018) Adaptive tracking control approach with prespecified accuracy for uncertain nonlinearly parameterized switching systems. IEEE Access 6:3786–3793. https://doi.org/10.1109/ACCESS.2017.2788446

    Article  Google Scholar 

  52. Marino R, Tomei P (1996) Nonlinear control design: geometric adaptive and robust. Prentice Hall International (UK) Ltd, UK

    MATH  Google Scholar 

  53. Wang F, Yang Y (2017) Correction: fractional order barbalat’s lemma and its applications in the stability of fractional order nonlinear systems. Math Model Anal 22(4):503–513. https://doi.org/10.3846/13926292.2017.1329755

    Article  MathSciNet  MATH  Google Scholar 

  54. Ding SX (2008) Model-based faults diagnosis techniques, design schemes, algorithms, and tools. Springer, Berlin. https://doi.org/10.1007/978-3-540-76304-8

    Book  Google Scholar 

  55. Xiong Z, Qu S, Luo J (2019) Adaptive multi-switching synchronization of high-order memristor-based hyperchaotic system with unknown parameters and its application in secure communication. Complexity 2019:1–18. https://doi.org/10.1155/2019/3827201

    Article  MATH  Google Scholar 

  56. Shafiq M, Ahmad I (2019) Multi-switching combination anti-synchronization of unknown hyperchaotic systems. Arab J Sci Eng. https://doi.org/10.1007/s13369-019-03824-8

    Article  Google Scholar 

  57. Khan A, Budhraja M, Ibraheem A (2018) Multi-switching synchronization of four non-identical hyperchaotic systems. Int J Appl Comput Math 4:71. https://doi.org/10.1007/s40819-018-0503-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Soup Tewa Kammogne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammogne, A.S.T., Nyiembui, T.P. & Kengne, R. Adaptive observer based-robust synchronization of switched fractional Rikitake systems with input nonlinearity. Int. J. Dynam. Control 10, 162–179 (2022). https://doi.org/10.1007/s40435-021-00796-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00796-2

Keywords

Navigation