Passivity control has its origin in teleoperation systems, where haptic devices that are in remote environments are controlled by a user, such as e.g. undersea or in space [5]. There, the coupled loop comprises the user, its input device, a communication channel, the slave robot and the unknown remote environment. Due to i.a. time-varying communication delays and uncertain parameters of the remote environment, the control loop is prone to instability [6]. Passivity-based control has proven successful in these applications and many different passivity control schemes have been proposed, see e.g. [5, 7,8,9,10,11,12]. The underlying principle of these schemes is passivity, which is a sufficient criterion for stability. A system is said to be passive if the rate of change of energy inside the system is smaller than, or equal to, the power that is supplied to the system. Otherwise, the system is active, meaning that the system itself generates energy. Assembling passive systems yields a passive network. Hence, if there is one system in the network that can become active, it is sufficient to guarantee passivity of this single system in order to have a passive network.
In HiL simulations, the structure of the problem is similar to teleoperation systems: The assembled system is composed of the numerical part, the transfer system and the experimental part. They correspond to the user, the input device with communication channel and slave robot, and respectively the haptic device and the uncertain environment it interacts with. Furthermore, force feedback and time delay are included in both HiL and teleoperation and can lead to unstable coupling. In general, if one disregards the energy put into the system by external forces, the numerical and the experimental part are passive systems, as they consist of mechanical elements (mass, spring, damper) that cannot generate energy. However, the transfer system (actuated) can generate energy and thus become active. It has two ports, where power is exchanged: the input port that connects the numerical part to the transfer system by exchanging the desired velocity \(\dot{z}\) and the measured force \(F_m \) (input power \(P_in =F_m \cdot \dot{z}\)) and the output port that connects the experimental part to the transfer system by generating the achieved velocity \(\dot{z^\prime }\) and the measured force \(F_m \) (output power \(P_out =F_m \cdot \dot{z^\prime }\))Footnote 2.
Related work
The application of Passivity-based control schemes to HiL has been rare, despite the advantage that it does not need a system identification or assumption about linearity and is able to maintain test stability [4]. Krenn et al. [13] were, to the authors’ knowledge, the first who applied PC to HiL. They applied the so-called time domain passivity control (TDPC), which was proposed by Hannaford et al. [8] for one-port systems and then extended to bilateral controllers by Ryu et al. in [11, 12]. In the TDPC, there are two components: the passivity observer (PO) and the passivity controller (PC). The PO observes the input and output port of the possibly active system (transfer system) and compares the input and output energy/power. If the output energy/power is larger than the input energy/power, the PC is activated and dampens the additionally added energy/power by an adaptive artificial damping \(\alpha \). This artificial damping can either be applied with impedance causality (augmentation of the input force) or admittance causality (augmentation of the velocity demand). In the rest of this paper, impedance causality will be explained and used. While [13] and [14] considered the energy error to calculate the damping value \(\alpha \), [4] used the power error to set the damping and called the scheme Normalized Passivity Control (NPC). [15] reported that using the power error has the advantages that changes in \(\alpha \) are smoother and that there is no integration necessary to retrieve the energy error from the power error. One of the latest publications in this field is [16], where also TDPC (consideration of the energy error) is applied. There, the PO monitors only the port between the numerical part and the transfer system and regards the combination of the transfer system and the experimental part as one subsystem. Since the former explained PO monitors both ports of the transfer system, it is able to measure exactly the amount of energy that is added to the dynamical system (numerical and experimental part) by the transfer system, whereas the PO by [16] only detects an energy increase in the numerical part. In preliminary studies, it was investigated that the two-port implementation detects instability earlier than the one-port implementation, wherefore it is expected to be more accurate.
Normalized passivity control
Because of the several advantages stated in Sect. 2.1 (immediate detection of instability, smooth changes of \(\alpha \)), Normalized Passivity Control (NPC) will be used in this work, which is based on TDPC. The scheme of NPC is visualized in Fig. 2, where the HiL structure from Fig. 1 is augmented by the PC. The PC introduces an adaptive damping force \(F_d \) (impedance causality) if the transfer system is active i.e., \(F_int = F_m + F_d \) is sent to the numerical part. The force augmentation \(F_d \) is calculated by \(F_d (t_k) = \alpha (t_k) \cdot \dot{z}(t_k)\) at time \(t_k\), where
$$\begin{aligned} \alpha (t_k)&= G_P \cdot \frac{\tilde{P}_error (t_{k-1})}{|\tilde{P}_tot (t_{k-1})|} , \end{aligned}$$
(1)
$$\begin{aligned} \text {with} \quad P_error&= F_m \cdot {{\dot{z}}^\prime } - F_int \cdot \dot{z} \end{aligned}$$
(2)
$$\begin{aligned} \text {and} \quad P_tot&= F_m \cdot {{\dot{z}}^\prime } + F_int \cdot {\dot{z}} . \end{aligned}$$
(3)
The tilde operator \(\tilde{\cdot }\) denotes that the signals are low-pass filtered, which smoothens the output \(F_d \) of the PC. Recommendations about the choice of the low-pass filter are given in [4]. \(P_error \) and \(P_tot \) are both evaluated at time \(t_{k-1}\). In TDPC, the artificial damping \(\alpha \) is calculated such that it exactly dampens the erroneously added amount of energy/power error. Here, in contrast, the damping scaling value \(G_P \) must be tuned by hand to achieve stability of the coupling. Its choice is a trade-off, since high values of \(G_P \) lead to stability, but also relatively high damping forces \(F_d \) that falsify the investigated dynamics [4].Footnote 3 Its influence on the HiL test will be investigated in Sect. 4.