Skip to main content
Log in

A novel incipient fault detection based on residual evaluation by using correlation dimension and inverse of largest Lyapunov exponent

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

One of the most significant challenges in fault detection and isolation methods is early detection of faults with very slow development rate. This paper proposes a novel robust residual evaluation to detect an incipient fault. Residual evaluation with largest Lyapunov exponent and correlation dimension is proposed to perform early fault detection. Since the residual in fault free case and independent identical distribution (i.i.d) Gaussian noise are typically similar, an analytical formula for largest Lyapunov exponent of i.i.d Gaussian noise with length of \( N \) is presented. The incipient faults of DAMADICS benchmark actuator are used to test the proposed approach; which the achieved simulation results confirm the method could detect incipient faults earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Largest Lyapunov Exponent.

  2. Correlation Dimension.

  3. Inverse of Largest Lyapunov Exponent.

References

  1. Chen J, Patton RJ (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, Berlin

    MATH  Google Scholar 

  2. Iserman R (2006) Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer, Berlin

    Google Scholar 

  3. Chiang LH, Braatz RD, Russell EL (2001) Fault detection and diagnosis in industrial systems. Springer, Berlin

    MATH  Google Scholar 

  4. Simani S, Fantuzzi C, Patton RJ (2013) Model-based fault diagnosis in dynamic systems using identification techniques. Springer, Berlin

    Google Scholar 

  5. Patan K (2008) Artificial neural networks for the modelling and fault diagnosis of technical processes. Springer, Berlin

    Google Scholar 

  6. Hojjatinia S, Lagoa CM, Dabbene F (2018) Identification of switched ARX systems from large noisy data sets. arXiv:1804.07411

  7. Emami-Naeini A, Akhter MM, Rock SM (1988) Effect of model uncertainty on failure detection: the threshold selector. IEEE Trans Autom Control 12:1106–1115

    MATH  Google Scholar 

  8. Abid M, Chen W, Ding S, Khan A (2011) Optimal residual evaluation for nonlinear systems using post-filter and threshold. Int J Control 83:526–539

    MathSciNet  MATH  Google Scholar 

  9. Ingimundarson A, Stefanopoulou AG, McKay DA (2008) Model-based detection of hydrogen leaks in a fuel cell stack. IEEE Trans Control Syst Technol 16:1004–1012

    Google Scholar 

  10. Ding S (2008) Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer, Berlin

    Google Scholar 

  11. Frank PM, Köppen-Seliger B (1997) Fuzzy logic and neural network applications to fault diagnosis. Int J Approx Reason 16:67–88

    MathSciNet  MATH  Google Scholar 

  12. Sneider H, Frank PM (1996) Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation. IEEE Trans Control Syst Technol 4:274–282

    Google Scholar 

  13. Basseville M, Nikiforov IV et al (1993) Detection of abrupt changes: theory and application, vol 104. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  14. Gertler J (1998) Fault detection and diagnosis in engineering systems. CRC Press, Boca Raton

    Google Scholar 

  15. Osburn W, Kostek TM, Franchek MA (2006) Residual generation and statistical pattern recognition for engine misfire diagnostics. Mech Syst Signal Process 20:2232–2258

    Google Scholar 

  16. Willsky S, Jones HL (1976) A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Trans Autom Control 21:108–112

    MathSciNet  MATH  Google Scholar 

  17. Svärd C, Nyberg M, Frisk E, Krysander M (2014) Data-driven and adaptive statistical residual evaluation for fault detection with an automotive application. Mech Syst Signal Process 45:170–192

    Google Scholar 

  18. Heydarzadeh M, Nourani M (2016) A two-stage fault detection and isolation platform for industrial systems using residual evaluation. IEEE Trans Instrum Meas 65:2424–2432

    Google Scholar 

  19. Yang XB, Jin XQ, Du ZM, Zhu YH (2011) A novel model-based fault detection method for temperature sensor using fractal correlation dimension. Build Environ 46(4):970–979

    Google Scholar 

  20. Przystałka P, Moczulski W (2015) Methodology of neural modelling in fault detection with the use of chaos engineering. Eng Appl Artif Intell 41:25–40

    Google Scholar 

  21. Marwan N, Romano MC, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329

    MathSciNet  Google Scholar 

  22. Xinmin T, Baoxiang D, Yong X (2007) Bearings fault diagnosis based on GMM model using lyapunov exponent spectrum. In: Annual conference of the IEEE industrial electronics society, Taipei, Taiwan

  23. Caesarendra W, Kosasih B, Tieu AK, Moodie CA (2015) Application of the largest Lyapunov exponent algorithm for feature extraction in low speed slew bearing condition monitoring. Mech Syst Signal Process 50:116–138

    Google Scholar 

  24. Guo Y, Naik GR, Huang S, Abraham A, Nguyen HT (2015) Nonlinear multiscale maximal Lyapunov exponent for accurate myoelectric signal classification. Appl Soft Comput 36:633–640

    Google Scholar 

  25. Soleimani A, Khadem S (2015) Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos Solitons Fractals 78:61–75

    Google Scholar 

  26. Yang J, Zhang Y, Zhu Y (2007) Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech Syst Signal Process 21:2012–2024

    Google Scholar 

  27. Yang M, Sima W, Yang Q, Li J, Zou M, Duan Q (2017) Non-linear characteristic quantity extraction of ferroresonance overvoltage time series. IET Gener Transm Distrib 11:1427–1433

    Google Scholar 

  28. Zhu Y-H, Li C-W, Jin W-D (2016) Chaos analysis of fault information of high-speed train based on reconstructed phase space. In: Proceedings of the 35th Chinese control conference, Chengdu, China

  29. Maddahi A, Kinsner W, Sepehri N (2016) Internal leakage detection in electrohydrostatic actuators using multiscale analysis of experimental data. IEEE Trans Instrum Meas 65(12):2734–2747

    Google Scholar 

  30. Caesarendra W, Kosasih B, Tieu AK, Zhu H, Moodie CA, Zhu Q (2016) Acoustic emission-based condition monitoring methods: review and application for low speed slew bearing,”. Mech Syst Signal Process 72:134–159

    Google Scholar 

  31. Huang HF, Song XL, Liu C, Huai XZ (2016) A novel fractal method for fault diagnosis and signal measurements. Optik 127(16):6805–6812

    Google Scholar 

  32. Calado JMF, da Costa JS, Bartys M, Korbicz J (2006) FDI approach to the DAMADICS benchmark problem based on qualitative reasoning coupled with fuzzy neural networks. Control Eng Pract 14(6):685–698

    Google Scholar 

  33. Puig V, Quevedo J, Escobet T, Nejjari F, de las Heras S (2008) Passive robust fault detection of dynamic processes using interval models. IEEE Trans Control Syst Technol 16(5):1083–1089

    Google Scholar 

  34. Subrahmanya N, Shin YC (2013) A data-based framework for fault detection and diagnostics of non-linear systems with partial state measurement. Eng Appl Artif Intell 26(1):446–455

    Google Scholar 

  35. Uppal FJ, Patton RJ, Witczak M (2006) A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem. Control Eng Pract 14(6):699–717

    Google Scholar 

  36. Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin

    MATH  Google Scholar 

  37. Procacia I (1983) Measuring the strangeness of strange attractors. Phys D 9(1–2):189–208

    MathSciNet  MATH  Google Scholar 

  38. Strogatz SH (2014) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Boulder

    MATH  Google Scholar 

  39. Takens F et al (1981) Dynamical systems of turbulence. Lect Notes Math 898:366

    MathSciNet  Google Scholar 

  40. Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65(3–4):579–616

    MathSciNet  MATH  Google Scholar 

  41. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3):285–317

    MathSciNet  MATH  Google Scholar 

  42. Sato S, Sano M, Sawada Y (1987) Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Progr Theor Phys 77(1):1–5

    MathSciNet  Google Scholar 

  43. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D Nonlinear Phenom 65(1–2):117–134

    MathSciNet  MATH  Google Scholar 

  44. Fischer H (2010) A history of the central limit theorem: from classical to modern probability theory. Springer, Berlin

    Google Scholar 

  45. De Haan L, Ferreira A (2007) Extreme value theory: an introduction. Springer, Berlin

    MATH  Google Scholar 

  46. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

  47. Walck C (2007) Statistical distributions for experimentalists. Part Phys Gr

  48. Bartyś M, Patton R, Syfert M, de las Heras S, Quevedo J (2006) Introduction to the DAMADICS actuator FDI benchmark study. Control Eng Pract 14(6):577–596

    Google Scholar 

  49. Bartyś M, Syfert M (2001) Using damadics actuator benchmark library (dablib). Final Ver 1:01–56

    Google Scholar 

  50. Beale HD, Demuth HB, Hagan MT (1996) Neural network design. PWS, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Aliyari Shoorehdeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahyaei, H., Aliyari Shoorehdeli, M. A novel incipient fault detection based on residual evaluation by using correlation dimension and inverse of largest Lyapunov exponent. Int. J. Dynam. Control 9, 56–70 (2021). https://doi.org/10.1007/s40435-020-00627-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00627-w

Keywords

Navigation