Skip to main content
Log in

A robust controller design for uncertain nonlinear non-affine systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a robust controller for a general class of uncertain nonlinear non-affine systems is designed. An affine virtual description with lumped uncertainty is provided for such systems using the pulse width modulation (PWM) and the Filippov’s average model. The uncertainty is estimated by means of an estimator, and a robust controller is then designed to cope with this uncertainty. Stability analysis of the whole system is derived based on the Lyapunov theorem. Finally, theoretical results are tested by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asada H, Slotine JJ, Slotine JJ (1986) Robot analysis and control. Wiley, New York

    Google Scholar 

  2. Spong MW, Hutchinson S, Vidyasagar M et al (2006) Robot modeling and control, vol 3. Wiley, New York

    Google Scholar 

  3. Ansari H, Mohammad MP, Ghanbari A (2014) Adaptive fuzzy computed torque controller for under actuated bipedal robot. In: ASME 2014 international mechanical engineering congress and exposition, pp. V04BT04A033–V04BT04A033. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2014-39773

  4. Khalil HK (2015) Nonlinear control. Pearson, New York

    MATH  Google Scholar 

  5. Slotine JJE, Li W et al (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  6. Bryson AE (2018) Applied optimal control: optimization, estimation and control. Routledge, New York

    Book  Google Scholar 

  7. Wang Y, Gao F, Doyle FJ III (2009) Survey on iterative learning control, repetitive control, and run-to-run control. J Process Control 19(10):1589–1600

    Article  Google Scholar 

  8. Vaidyanathan S, Volos C et al (2016) Advances and applications in nonlinear control systems, vol 635. Springer, New York

    Book  Google Scholar 

  9. Bu X, He G, Wang K (2018) Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design. ISA Trans 75:88–100

    Article  Google Scholar 

  10. Mobayen S, Tchier F (2016) An lmi approach to adaptive robust tracker design for uncertain nonlinear systems with time-delays and input nonlinearities. Nonlinear Dyn 85(3):1965–1978

    Article  MathSciNet  Google Scholar 

  11. Wang Y, Chen M, Wu Q, Zhang J (2018) Fuzzy adaptive non-affine attitude tracking control for a generic hypersonic flight vehicle. Aerosp Sci Technol 80:56–66

    Article  Google Scholar 

  12. Bu X (2018) Guaranteeing prescribed performance for air-breathing hypersonic vehicles via an adaptive non-affine tracking controller. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2018.06.041

    Article  MATH  Google Scholar 

  13. Bu X (2018) Air-breathing hypersonic vehicles funnel control using neural approximation of non-affine dynamics. IEEE/ASME Trans Mechatron 23(5):2099–2108

    Article  Google Scholar 

  14. Haseltalab A, Negenborn RR (2017) Adaptive control for a class of partially unknown non-affine systems: applied to autonomous surface vessels. IFAC-PapersOnLine 50(1):4252–4257

    Article  Google Scholar 

  15. Geranmehr B, Nekoo SR (2015) Nonlinear suboptimal control of fully coupled non-affine six-dof autonomous underwater vehicle using the state-dependent riccati equation. Ocean Eng 96:248–257

    Article  Google Scholar 

  16. Zong-Cheng L, Xin-Min D, Jian-Ping X (2014) Adaptive neural control for a class of uncertain chaotic system with non-affine input. In: Control conference (CCC), 2014 33rd Chinese, pp 2069–2074. IEEE. https://doi.org/10.1109/ChiCC.2014.6896949

  17. Tombul GS, Banks SP, Akturk N (2009) Sliding mode control for a class of non-affine nonlinear systems. Nonlinear Anal Theory Methods Appl 71(12):e1589–e1597

    Article  MathSciNet  Google Scholar 

  18. Bogkovic J, Chen L, Mehra RK (2001) Adaptive tracking control of a class of non-affine plants using dynamic feedback. In: American control conference, 2001. Proceedings of the 2001, vol 3, pp 2450–2455. IEEE

  19. Labiod S, Boucherit MS, Guerra TM (2005) Adaptive fuzzy control of a class of mimo nonlinear systems. Fuzzy Sets Syst 151(1):59–77

    Article  MathSciNet  Google Scholar 

  20. Mobayen S, Tchier F (2015) A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems. Kybernetika 51(6):1035–1048

    MathSciNet  MATH  Google Scholar 

  21. Mobayen S, Tchier F (2017) A novel robust adaptive second-order sliding mode tracking control technique for uncertain dynamical systems with matched and unmatched disturbances. Int J Control Autom Syst 15(3):1097–1106

    Article  Google Scholar 

  22. Esmaeili N, Alfi A, Khosravi H (2019) Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: design and experiments. J Franklin Inst 87

  23. Deng Y, Wang J, Li H, Liu J, Tian D (2018) Adaptive sliding mode current control with sliding mode disturbance observer for pmsm drives. ISA Trans. https://doi.org/10.1016/j.isatra.2018.11.039

    Article  Google Scholar 

  24. Guo J (2019) Application of full order sliding mode control based on different areas power system with load frequency control. ISA Trans. https://doi.org/10.1016/j.isatra.2019.01.036

    Article  Google Scholar 

  25. Adhikary N, Mahanta C (2018) Sliding mode control of position commanded robot manipulators. Control Eng Pract 81:183–198

    Article  Google Scholar 

  26. Edwards C, Shtessel Y (2019) Enhanced continuous higher order sliding mode control with adaptation. J Franklin Inst. https://doi.org/10.1016/j.jfranklin.2018.12.026

    Article  MathSciNet  MATH  Google Scholar 

  27. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J et al (2018) Recent advances in convolutional neural networks. Pattern Recognit 77:354–377

    Article  Google Scholar 

  28. Tabatabaei SM, Arefi MM (2016) Adaptive neural control for a class of uncertain non-affine nonlinear switched systems. Nonlinear Dyn 83(3):1773–1781

    Article  MathSciNet  Google Scholar 

  29. Ramezani Z, Arefi MM, Zargarzadeh H, Jahed-Motlagh MR (2016) Neuro-adaptive backstepping control of siso non-affine systems with unknown gain sign. ISA Trans 65:199–209

    Article  Google Scholar 

  30. Ramezani Z, Arefi MM, Zargarzadeh H, Jahed-Motlagh MR (2016) Neuro observer-based control of pure feedback mimo systems with unknown control direction. IET Control Theory Appl 11(2):213–224

    Article  MathSciNet  Google Scholar 

  31. Wang C, Hill DJ, Ge SS, Chen G (2006) An iss-modular approach for adaptive neural control of pure-feedback systems. Automatica 42(5):723–731

    Article  MathSciNet  Google Scholar 

  32. Zhang T, Ge S, Hang C (1998) Direct adaptive control of non-affine nonlinear systems using multilayer neural networks. In: American control conference, 1998. Proceedings of the 1998, vol 1, pp 515–519. IEEE

  33. Boulkroune A, M’Saad M, Farza M (2012) Fuzzy approximation-based indirect adaptive controller for multi-input multi-output non-affine systems with unknown control direction. IET Control Theory Appl 6(17):2619–2629

    Article  MathSciNet  Google Scholar 

  34. Boukezzoula R, Galichet S, Foulloy L (2003) Fuzzy adaptive linearizing control for non-affine systems. In: Fuzzy Systems, 2003. FUZZ’03. The 12th IEEE international conference on, vol 1, pp 543–548. IEEE

  35. Zhang Q, Wang C, Xu D (2018) Finite-time stabilization for a class of non-affine nonlinear systems with input saturation and time-varying output constraints. IEEE Access 6:23529–23539

    Article  Google Scholar 

  36. Zhang W, Ge SS (2006) A global implicit function theorem without initial point and its applications to control of non-affine systems of high dimensions. J Math Anal Appl 313(1):251–261

    Article  MathSciNet  Google Scholar 

  37. Arefi MM, Zarei J, Karimi HR (2014) Adaptive output feedback neural network control of uncertain non-affine systems with unknown control direction. J Franklin Inst 351(8):4302–4316

    Article  MathSciNet  Google Scholar 

  38. Nekoo SR, Geranmehr B (2014) Nonlinear observer-based optimal control using the state-dependent Riccati equation for a class of non-affine control systems. J Control Eng Appl Inf 16(2):5–13

    Google Scholar 

  39. Rong-Hu C, Zhong-Sheng H (2007) Dual-stage optimal iterative learning control for nonlinear non-affine discrete-time systems. Acta Autom Sin 33(10):1061–1065

    MathSciNet  Google Scholar 

  40. Arefi MM, Ramezani Z, Jahed-Motlagh MR (2014) Observer-based adaptive robust control of nonlinear nonaffine systems with unknown gain sign. Nonlinear Dyn 78(3):2185–2194

    Article  MathSciNet  Google Scholar 

  41. Shahri ESA, Alfi A, Machado JT (2015) An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Appl Math Lett 47:26–34

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Alfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, H., Alfi, A. A robust controller design for uncertain nonlinear non-affine systems. Int. J. Dynam. Control 7, 1443–1452 (2019). https://doi.org/10.1007/s40435-019-00544-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-019-00544-7

Keywords

Navigation