Dynamics of nonlinear oscillator with transient feedback

  • Shiva Dixit
  • Amit Sharma
  • Awadhesh Prasad
  • Manish Dev ShrimaliEmail author


The feedback is an integral part of many natural as well as engineering systems. Here, we explore the effect of transient feedback on the dynamics of a nonlinear oscillator. Transient feedback is active in either a certain state-space or for a given time interval otherwise inactive. The transient feedback suppresses the oscillations and stabilizes the system to a steady state. The transition from oscillatory state to steady state is possible even with the transient spatial or temporal feedback. Chaotic and limit cycle oscillators are studied as a prototype model.


Transient feedback Oscillation suppression 



MS and AP acknowledges financial support from SERB, Department of Science and Technology (DST), India (EMR/2016/005561 and EMR/2016/001129).


  1. 1.
    Ditto WL, Rauseo SN, Spano ML (1990) Experimental control of chaos. Phys Rev Lett 65(26):3211CrossRefGoogle Scholar
  2. 2.
    Garfinkel A, Spano ML, Ditto WL, Weiss JN (1992) Controlling cardiac chaos. Science 257(5074):1230–1235CrossRefGoogle Scholar
  3. 3.
    Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL (1994) Controlling chaos in the brain. Nature 370(6491):615CrossRefGoogle Scholar
  4. 4.
    Hunt ER (1991) Stabilizing high-period orbits in a chaotic system: the diode resonator. Phys Rev Lett 67(15):1953CrossRefGoogle Scholar
  5. 5.
    Astrm KJ, Murray RM (2010) Feedback systems: an intro-duction for scientists and engineers. Princeton University Press, PrincetonCrossRefGoogle Scholar
  6. 6.
    Pyragas K (1995) Control of chaos via extended delay feed-back. Phys Lett A 206(5–6):323–330MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braiman Y, Goldhirsch I (1991) Taming chaotic dynamics with weak periodic perturbations. Phys Rev Lett 66(20):2545MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lima R, Pettini M (1990) Suppression of chaos by resonant parametric perturbations. Phys Rev A 41(2):726MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chacn R, Bejarano JD (1993) Routes to suppressing chaos by weak periodic perturbations. Phys Rev Lett 71(19):3103CrossRefGoogle Scholar
  10. 10.
    Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Schöll E, Schuster HG (eds) (2008) Handbook of chaos control. WileyGoogle Scholar
  12. 12.
    Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Freeman M (2000) Feedback control of intercellular signalling in development. Nature 408(6810):313CrossRefGoogle Scholar
  14. 14.
    Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science 322(5900):390–395MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sonneborn LM, Van Vleck FS (1964) The bang–bang principle for linear control systems. J Soc Ind Appl Math, Ser A: Control 2(2):151–159MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Clarke F (2010) Discontinuous feedback and nonlinear systems. IFAC Proc Vol 43(14):1–29CrossRefGoogle Scholar
  17. 17.
    Yadav K, Kamal NK, Shrimali MD (2017) Intermittent feedback induces attractor selection. Phys Rev E 95(4):042215MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yadav K, Prasad A, Shrimali MD (2018) Control of coexisting attractors via temporal feedback. Phys Lett A 382(32):2127–2132MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences, vol 12. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  20. 20.
    Luo ACJ (2013) Dynamical system synchronization. Springer, New YorkCrossRefzbMATHGoogle Scholar
  21. 21.
    Schrder M, Mannattil M, Dutta D, Chakraborty S, Timme M (2015) Transient uncoupling induces synchronization. Phys Rev Lett 115(5):054101CrossRefGoogle Scholar
  22. 22.
    Tandon A, Schrder M, Mannattil M, Timme M, Chakraborty S (2016) Synchronizing noisy nonidentical oscillators by transient uncoupling. Chaos: Interdiscipl J Nonlinear Sci 26(9):094817MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen L, Qiu C, Huang H (2009) Synchronization with on–off coupling: role of time scales in network dynamics. Phys Rev E 79(4):045101CrossRefGoogle Scholar
  24. 24.
    Chen L, Qiu C, Huang H, Qi G, Wang H (2010) Facilitated synchronization of complex networks through a discontinuous coupling strategy. Eur Phys J B 76(4):625–635CrossRefzbMATHGoogle Scholar
  25. 25.
    Buscarino A, Frasca M, Branciforte M, Fortuna L, Sprott JC (2017) Synchronization of two Rössler systems with switching coupling. Nonlinear Dyn 88(1):673–683CrossRefGoogle Scholar
  26. 26.
    Prasad A (2013) Time-varying interaction leads to amplitude death in coupled nonlinear oscillators. Pramana 81(3):407–415CrossRefGoogle Scholar
  27. 27.
    Sun Z, Zhao N, Yang X, Xu W (2018) Inducing amplitude death via discontinuous coupling. Nonlinear Dyn 92(3):1185–1195CrossRefGoogle Scholar
  28. 28.
    Suresh K, Shrimali MD, Prasad A, Thamilmaran K (2014) Experimental evidence for amplitude death induced by a time-varying interaction. Phys Lett A 378(38):2845–2850MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yadav K, Sharma A, Shrimali MD (2017) Dynamics of non-linear oscillators with time-varying conjugate coupling. Proc Conf Perspect Non-linear Dyn 1:157Google Scholar
  30. 30.
    Cosentino C, Bates D (2012) Feedback control in systems biology. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Cowan NJ, Ankarali MM, Dyhr JP, Madhav MS, Roth E, Sefati S, Sponberg S, Stamper SA, Fortune ES, Daniel TL (2014) Feedback control as a framework for understanding tradeoffs in biology. Integr Comp Biol 54(2):223CrossRefGoogle Scholar
  32. 32.
    Ghosh A, Godara P, Chakraborty S (2018) Understanding transient uncoupling induced synchronization through modified dynamic coupling. Chaos: Interdiscipl J Nonlinear Sci 28(5):053112MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Goldwyn EE, Hastings A (2008) When can dispersal synchronize populations? Theor Popul Biol 73(3):395–402CrossRefzbMATHGoogle Scholar
  34. 34.
    Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97(895):209–223CrossRefGoogle Scholar
  35. 35.
    Utkin VI (1987) Discontinuous control systems: state of art in theory and applications. IFAC Proc Vol 20(5):25–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCentral University of RajasthanAjmerIndia
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiNew DelhiIndia

Personalised recommendations