Skip to main content
Log in

Controller design for nonlinear time delay distributed control systems subjected to input saturation nonlinearity and disturbances

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This article proposes a state feedback controller synthesis for nonlinear time-delay distributed control systems subjected to input saturation nonlinearity and disturbances. Nonlinear time-delay distributed control system individual states are without time-delay and the states coming from other subsystems have the communication link time-delay. The coupling states time-delay is presumed to be time-varying within a predefined bound. First, we suggest global state feedback controller design and then, we extend the proposed global design technique to more general local state feedback controller scheme by using an auxiliary region of attraction. Linear matrix inequality (LMI)-based solution is anticipated to synthesis global and local state feedback controller by using global and local sector bounded condition, Lyapunov–Krasovskii function, and Lipschitz condition. Which guarantee global and local asymptotic stability of the complete closed-loop system and \( L_{2} \) gain reduction of the mapping from \( d_{p} (t) \) to \( z_{p} (t) \). Application results are presented to validate the benefits and effectiveness of the anticipated controller design schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tipsuwan Y, Chow MY (2003) Control methodologies in networked control systems. Control Eng Pract 11(10):1099–1111

    Article  Google Scholar 

  2. Branicky MS, Liberatore V, Phillips SM (2003) Networked control system co-simulation for co-design. IEEE Am Control Conf 4:3341–3346

    Google Scholar 

  3. D’Andrea R, Dullerud GE (2003) Distributed control design for spatially interconnected systems. IEEE Trans Autom Control 48(9):1478–1495

    Article  MathSciNet  MATH  Google Scholar 

  4. Antsaklis P, Baillieul J (2007) Special issue on technology of networked control systems. Proc IEEE 95(1):5–8

    Article  Google Scholar 

  5. Song YQ (2009) Networked control systems: from independent designs of the network QoS and the control to the co-design. IFAC Proc Vol 42(3):155–162

    Article  Google Scholar 

  6. Nguyen XH, Juanole G (2012) Design of networked control systems (NCSs) on the basis of interplays between quality of control and quality of service. In: IEEE international symposium on industrial embedded systems (SIES), IEEE, pp 85–93

  7. Donkers MCF, Heemels WPMH, Van de Wouw N, Hetel L (2011) Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans Autom Control 56(9):2101–2115

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu K, Fridman E, Hetel L (2014) Networked control systems: a time-delay approach. In: IEEE european control conference (ECC), pp 1434–1439

  9. Hussain M, Rehan M (2016) Nonlinear time-delay anti-windup compensator synthesis for nonlinear time-delay systems: a delay-range-dependent approach. Neurocomputing 186:54–65

    Article  Google Scholar 

  10. Yan H, Zhang H, Meng MQH (2010) Delay-range-dependent robust H∞ control for uncertain systems with interval time-varying delays. Neurocomputing 73(7):1235–1243

    Article  Google Scholar 

  11. He Y, Wang QG, Lin C, Wu M (2007) Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2):371–376

    Article  MathSciNet  MATH  Google Scholar 

  12. Li H, Shi Y (2013) Distributed model predictive control of constrained nonlinear systems with communication delays. Syst Control Lett 62(10):819–826

    Article  MathSciNet  MATH  Google Scholar 

  13. Hussain M, us Saqib N, Rehan M (2016) Nonlinear dynamic regional anti-windup compensator (RAWC) schema for constrained nonlinear systems. In: IEEE international conference on emerging technologies (ICET), pp 1–6

  14. Hussain M, Rehan M, Ahn CK, Tufail M (2018) Robust anti-windup for one-sided lipschitz systems subject to input saturation and applications. IEEE Trans Ind Electron. https://doi.org/10.1109/TIE.2018.2815950

    Google Scholar 

  15. Kapila V, Haddad WM (1998) Memoryless H controllers for discrete-time systems with time delay. Automatica 34(9):1141–1144

    Article  MATH  Google Scholar 

  16. Kim JH, Park HB (1999) H state feedback control for generalized continuous/discrete time-delay system. Automatica 35(8):1443–1451

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu S, Lam J, Yang C (2001) H/sub/spl infin//and positive-real control for linear neutral delay systems. IEEE Trans Autom Control 46(8):1321–1326

    Article  MATH  Google Scholar 

  18. Yu L, Chu J, Su H (1996) Robust memoryless H controller design for linear time-delay systems with norm-bounded time-varying uncertainty. Automatica 32(12):1759–1762

    Article  MathSciNet  MATH  Google Scholar 

  19. De Souza CE, Li X (1999) Delay-dependent robust H control of uncertain linear state-delayed systems. Automatica 35(7):1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  20. Fridman E, Shaked U (2002) A descriptor system approach to H/sub/spl infin//control of linear time-delay systems. IEEE Trans Autom Control 47(2):253–270

    Article  MATH  Google Scholar 

  21. Fridman E, Shaked U (2002) An improved stabilization method for linear time-delay systems. IEEE Trans Autom Control 47(11):1931–1937

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu S, Lam J, Zou Y (2006) New results on delay-dependent robust H control for systems with time-varying delays. Automatica 42(2):343–348

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang F (ed) (2006) The Schur complement and its applications, vol 4. Springer, Berlin

    Google Scholar 

  24. Li H, Shi Y (2014) Robust distributed model predictive control of constrained continuous-time nonlinear systems: a robustness constraint approach. IEEE Trans Autom Control 59(6):1673–1678

    Article  Google Scholar 

  25. Dunbar WB, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558

    Article  MathSciNet  MATH  Google Scholar 

  26. Keviczky T, Borrelli F, Balas GJ (2006) Decentralized receding horizon control for large scale dynamically decoupled systems. Automatica 42(12):2105–2115

    Article  MathSciNet  MATH  Google Scholar 

  27. Li H, Shi Y (2012) State-feedback H control for stochastic time-delay nonlinear systems with state and disturbance-dependent noise. Int J Control 85(10):1515–1531

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan H, Huang X, Wang M, Zhang H (2006) Delay-independent criteria for robust stability of uncertain networked control systems with multiple state time-delays. In: IEEE international conference on mechatronics and automation, pp 707–712

  29. Yan H, Huang X, Wang M, Zhang H (2006) Delay-dependent robust stability of networked control systems with uncertainties and multiple time-varying delays. In: ieee international conference on mechatronics and automation, pp 373–378

  30. Raghavan S, Hedrick JK (1994) Observer design for a class of nonlinear systems. Int J Control 59(2):515–528

    Article  MathSciNet  MATH  Google Scholar 

  31. Rajamani R (1998) Observers for Lipschitz nonlinear systems. IEEE Trans Autom Control 43(3):397–401

    Article  MathSciNet  MATH  Google Scholar 

  32. Torkamani S, Butcher EA (2013) Delay, state, and parameter estimation in chaotic and hyperchaotic delayed systems with uncertainty and time-varying delay. Int J Dyn Control 1(2):135–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muntazir Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Siddique, M., Hashmi, M.U. et al. Controller design for nonlinear time delay distributed control systems subjected to input saturation nonlinearity and disturbances. Int. J. Dynam. Control 7, 557–566 (2019). https://doi.org/10.1007/s40435-018-0473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0473-4

Keywords

Navigation