Skip to main content
Log in

Sequent period-(2m − 1) motions to chaos in the van der Pol oscillator

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, independent, symmetric, periodic motions in a van der Pol oscillator are predicted through a semi-analytical method. This semi-analytic method is based on the discretization of the corresponding continuous nonlinear system for an implicit mapping. Through the implicit mapping structures, stable and unstable periodic motions are obtained analytically. A sequence of periodic motions to chaos via 1(S) ◁ 3(S) ◁ ··· ◁ (2m − 1)(S) ◁ ··· is discovered. The stability and bifurcations of periodic motions are determined through eigenvalue analysis. The frequency–amplitude characteristics of periodic motions are discussed. Numerical simulations of the periodic motions are carried out for comparison of numerical and analytical results. Such a periodic motion sequence is for a better understanding of dynamics of the van der Pol oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev 1:701–710, 754–762

    Google Scholar 

  2. van der Pol B, van der Mark J (1927) Frequency demultiplication. Nature 120:363–364

    Article  Google Scholar 

  3. Van der Pol B (1934) The nonlinear theory of electric oscillations. Proc Inst Radio Eng 22(9):1051–1086

    MATH  Google Scholar 

  4. Cartwright ML, Littlewood JE (1945) On nonlinear differential equations of the second order I. The equation \( \ddot{y} - k(1 - y^{2} )\dot{y} + y = b\lambda k\cos (\lambda t + \alpha ) \), k large. J Lond Math Soc 20:180–189

  5. Littlewood JE (1947) On non-linear differential equations of the second order: III. The equation \( \ddot{y} - k(1 - y^{2} )\dot{y} + y = b\mu k\cos (\mu t + \alpha ) \) for large k, and its generalizations. Acta Math 97(1–4): 267–308

  6. Levinson N (1948) A simple second order differential equation with singular motions. Proc Natl Acad Sci USA 34(1):13–15

    Article  MathSciNet  MATH  Google Scholar 

  7. Levinson N (1949) A second order differential equation with singular solutions. Ann Math II Ser 50(1):127–153

    Article  MathSciNet  MATH  Google Scholar 

  8. Smale S (1967) Differentiable dynamical systems. Bull Am Math Soc 73:747–817

    Article  MathSciNet  MATH  Google Scholar 

  9. Buonomo A (1998) The periodic solution of van der Pol’s equation. SIAM J Appl Math 59(1):156–171

    Article  MathSciNet  MATH  Google Scholar 

  10. Buonomo A (1998) On the periodic solution of the van der Pol equation for small values of the damping parameter. Int J Circuit Theory Appl 26(1):39–52

    Article  MATH  Google Scholar 

  11. Mickens RE (2001) Analytical and numerical study of a nonstandard finite difference scheme for the unplugged van der Pol equation. J Sound Vib 245:757–761

    Article  MATH  Google Scholar 

  12. Mickens RE (2002) Step-size dependence of the period for a forward-Euler scheme of the van der Pol equation. J Sound Vib 258:199–202

    Article  MathSciNet  MATH  Google Scholar 

  13. Waluya SB, van Horssen WT (2003) On the periodic solutions of a generalized non-linear van der Pol oscillator. J Sound Vib 268:209–215

    Article  MathSciNet  MATH  Google Scholar 

  14. Andrianov IV, van Horssen WT (2006) Analytical approximations of the period of a generalized nonlinear van der Pol oscillator. J Sound Vib 295:10991104

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo ACJ (2012) Continuous dynamical systems. HEP/L&H Scientific, Beijing/Glen Carbon

    MATH  Google Scholar 

  16. Luo ACJ, Lakeh AB (2013) Analytical solutions for period-m motions in a periodically forced van der Pol oscillator. Int J Dyn Control 1(2):99–115

    Article  Google Scholar 

  17. Luo ACJ, Lakeh AB (2014) An approximate solution for period-1 motions in a periodically forced van der Pol oscillator. J Comput Nonlinear Dyn 9(3):031001

    Article  Google Scholar 

  18. Luo ACJ, Lakeh AB (2014) Period-m motions and bifurcation trees in a periodically forced, van der Pol–Duffing oscillator. Int J Dyn Control 2(4):474–493

    Article  Google Scholar 

  19. Luo ACJ (2015) Periodic flows to chaos based on discrete implicit mappings of continuous nonlinear systems. Int J Bifurc Chaos 25(03):1550044

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo ACJ (2015) Discretization and implicit mapping dynamics. HEP/Springer, Beijing/Berlin

    Book  MATH  Google Scholar 

  21. Luo ACJ, Guo Y (2015) A semi-analytical prediction of periodic motions in Duffing oscillator through mapping structures. Discontin Nonlinear Complex 4(2):121–150

    MathSciNet  MATH  Google Scholar 

  22. Guo Y, Luo ACJ (2015) On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator. Chaos Solitons Fractals 81:378–399

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo Y, Luo ACJ (2017) Periodic motions in a double-well Duffing oscillator under periodic excitation through discrete implicit mappings. Int J Dyn Control 5(2):223–238

    Article  MathSciNet  Google Scholar 

  24. Guo Y, Luo ACJ (2017) Routes of periodic motions to chaos in a periodically forced pendulum. Int J Dyn Control 5(3):551–569

    Article  MathSciNet  Google Scholar 

  25. Luo ACJ, Xing S (2017) On frequency responses of period-1 motions to chaos in a periodically forced, time-delayed quadratic nonlinear system. Int J Dyn Control 5(3):466–476

    Article  MathSciNet  Google Scholar 

  26. Luo ACJ, Xing S (2016) Multiple bifurcation trees of period-1 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator. Chaos Solitons Fractals 89:405–434

    Article  MathSciNet  MATH  Google Scholar 

  27. Xing S, Luo ACJ (2018) On possible infinite bifurcation trees of period-3 motions to chaos in a time-delayed, twin-well Duffing oscillator. Int J Dyn Control. https://doi.org/10.1007/s40435-018-0418-y

    MathSciNet  Google Scholar 

  28. Xu Y, Luo ACJ (2018) A series of symmetric period-1 motion to chaos in a two degree of freedom van der Pol duffing oscillator. J Vib Test Syst Dyn 2(2):119–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Luo, A.C.J. Sequent period-(2m − 1) motions to chaos in the van der Pol oscillator. Int. J. Dynam. Control 7, 795–807 (2019). https://doi.org/10.1007/s40435-018-0468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0468-1

Keywords

Navigation