Remerging Feigenbaum trees, and multiple coexisting bifurcations in a novel hybrid diode-based hyperjerk circuit with offset boosting

  • Gervais Dolvis Leutcho
  • Jacques Kengne
  • Romanic Kengne


This paper proposes a novel chaotic hyperjerk circuit obtained from the autonomous 4-D hyperjerk circuit (Leutcho et al. in Chaos Solitons Fractals 107:67–87, 2018) via substituting the nonlinear component (pair of anti-parallel diodes) with a first order hybrid diode circuit. The nonlinear component (i.e. hybrid diode) is characterized by a frequency dependent nonlinear I–V characteristic which is responsible for complex behaviours of the whole circuit. The essential dynamic properties of the model are investigated by exploiting numerical tools of nonlinear theory such as bifurcation diagrams, graphs of Lyapunov exponents, as well as phase portraits. Some interesting features are found including period-doubling bifurcation, coexisting bifurcations, symmetry recovering crises, antimonotonicity, and offset-boosting. One of the most interesting features of the new hyperjerk circuit is the presence of various areas of parameter space in which the hyperjerk system exhibits the attractive and intricate property of coexisting bifurcation and several coexisting attractors (e.g. coexistence of two, three, four, five, six, or seven disconnected periodic and chaotic attractors) for the same parameter’ set. Laboratory experimental results show a very good agreement with the theoretical analysis.


Hyperjerk circuit Hybrid diode Coexisting bifurcation Offset-boosting Basins of attraction Experimental study 


  1. 1.
    Sprott JC (1997) Simplest dissipative chaotic flow. Phys Lett A 228:271–274MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sprott JC (2010) Elegant Chaos: algebraically simple flow. World Scientific Publishing, SingaporeCrossRefzbMATHGoogle Scholar
  3. 3.
    Leutcho GD, Kengne J, Kamdjeu Kengne L (2018) Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity. Chaos Solitons Fractals 107:67–87MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sprott JC (2011) A new chaotic jerk circuit. IEEE Trans Circuit Syst II Express Briefs 58:240–243CrossRefGoogle Scholar
  5. 5.
    Kengne J, NguomkamNegou A, Tchiotsop D (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn 88(4):2589–2608CrossRefGoogle Scholar
  6. 6.
    Kengne J, Folifack VR, Chedjou J, Leutcho GD (2017) Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors. Int J Dynam Control. Google Scholar
  7. 7.
    Njitacke ZT, Kengne J, Kamdjeu KL (2017) Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos Solitons Fractals 105:77–91MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kengne J, Njitacke ZT, Fotsin HB (2016) Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Commun Nonlinear Sci Numer Simul 36:29–44MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kengne J, Njitacke ZT, Fotsin HB (2016) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83:751–765MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pham VT, Volos CK, Vaidyanathan S, Le TP, Le T, Vu V (2015) A memristor-based hyperchaotic system with hidden attractors. Dynamics, synchronization and circuit emulating. J Eng Sci Technol Rev 2:205–14Google Scholar
  11. 11.
    Al-Smadi M, Freihat A, Abu Arqub O, Shawagfeh N (2015) A novel multistep generalized differential transform method for solving fractional-order Lü chaotic and hyperchaotic systems. J Comput Anal Appl 19:713–724MathSciNetzbMATHGoogle Scholar
  12. 12.
    Abu Arqub O (2016) the reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math Methods Appl Sci 39:4549–4562MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    El-Ajou A, Abu Arqub O, Momani S (2012) Homotopy analysis method for second-order boundary value problems of integrodifferential equations. Discrete Dyn Nat Soc 365792(2012):18. MathSciNetzbMATHGoogle Scholar
  14. 14.
    Jafari S, Ahmadi A, Panahi S, Rajagopal K (2018) Extreme multi-stability: when imperfection changes quality. Chaos Solitons Fractals 108:182–186CrossRefGoogle Scholar
  15. 15.
    Jafari S, Sprott JC, Pham VT, Volos K, Li C (2016) Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn 86:1349–1358CrossRefGoogle Scholar
  16. 16.
    Akif A, Calgan H, Koyuncu I, Pehlivan I, Istanbullu A (2016) Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dyn 84:481–495MathSciNetCrossRefGoogle Scholar
  17. 17.
    Akif A, Shafqat H, Ihsan P (2016) A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications. Optik Int J Light Electron Opt 127:7062–7071CrossRefGoogle Scholar
  18. 18.
    Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9:274–279CrossRefGoogle Scholar
  19. 19.
    Vaidyanathan S, Azar AT (2014) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. Chaos Model Control Syst Des 581:19–38MathSciNetGoogle Scholar
  20. 20.
    Akif A, Li C, Pehlivan I (2017) Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. J Circuit Syst Comput 26:1750190CrossRefGoogle Scholar
  21. 21.
    Akif A, Pehlivan I (2016) A new three-dimensional chaotic system without equilibrium points, its dynamical analyses and electronic circuit application. Tehnički vjesnik. Google Scholar
  22. 22.
    Vaidyanathan S, Akgul A, Kaçar S, Çavusoglu U (2018) A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. Eur Phys J Plus 133:46CrossRefGoogle Scholar
  23. 23.
    Klouverakis KE, Sprott JC (2006) Chaotic hyperjerk systems. Chaos Solitons Fractals 28:739–746MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Linz SJ (2008) On hyperjerk systems. Chaos Solitons Fractals 37:741–747MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Elhadj Z, Sprott JC (2008) Transformation of 4-D dynamical systems to hyperjerk form. Palest J Math 2013:38–45MathSciNetzbMATHGoogle Scholar
  26. 26.
    Munmuangsaen B, Srisuchinwong B (2011) Elemetary chaotic snap flows. Chaos Solitons Fractals 44:995–1003CrossRefGoogle Scholar
  27. 27.
    Fatma YD, Sprott JC (2016) Simple chaotic hyperjerk system. Int J Bifurc Chaos 26:1650189MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vaidyanathan S, Volos C, Pham V-T, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch Control Sci 25:135–158MathSciNetGoogle Scholar
  29. 29.
    Wang X, Vaidyanathan S, Volos C, Pham V-T, Kapitaniak T (2017) Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn. MathSciNetzbMATHGoogle Scholar
  30. 30.
    Peter D, Sundarapandian V, Viet-Thanh P, Volos CK, Nistazakis E, Tombras G (2017) Hyperchaotic atractor in a novel hyperjerk system with two nonlinearities. Circuits Syst Signal Process 37:613Google Scholar
  31. 31.
    Pham VT, Vaidyanathan S, Volos CK, Jafari S, Wang X (2016) A chaotic hyperjerk system based on memristive device. In: Vaidyanathan S, Volos C (eds) Advances and applications in chaotic systems. Studies in computational intelligence, vol 636. Springer, BerlinGoogle Scholar
  32. 32.
    Bao B, Zou X, Liu Z, Hu F (2013) Generalized memory element and chaotic memory system. Int J Bifurc Chaos 23:1350135–1350412MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bao B, Hu F, Chen M, Xu Q (2015) Self-excited and hidden attractors found simultaneously in a modified Chua’s circuit. Int J Bifurc Chaos 5:1550075CrossRefzbMATHGoogle Scholar
  34. 34.
    Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) A chaotic circuit based on Hewlett–Packard memristor. Chaos 22:023136MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li C, Sprott JC (2014) Coexisting hidden attractors in a 4-D simplified Lorenz system. Int J Bifurc Chaos 24:1450034MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Qiang L, Tsafack N, Kengne J, Xiao-Wen Z (2018) Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria. Chaos Solitons Fractals 107:92–102MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Vaithianathan V, Veijun J (1999) Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circuit Syst I Fundam Theory Appl 6:405–409Google Scholar
  38. 38.
    Xu Q, Lin Y, Bao B, Chen M (2016) Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83:186–200MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos 23:133000239-1–69MathSciNetzbMATHGoogle Scholar
  40. 40.
    Leonov GA, Kuznetsov NV, Mokaev TN (2015) Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur Phys J Spec Top 224:1421–1458CrossRefGoogle Scholar
  41. 41.
    Jafari S, Sprott JC, Nazarimehr F (2015) Recent new examples of hidden attractors. Eur Phys J Spec Top 224:1469–1476CrossRefGoogle Scholar
  42. 42.
    Jafari S, Pham VT, Kapitaniak T (2016) Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int J Bifurc Chaos 26:1650031MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Jafari S, Sprott JC, Molaie M (2016) A simple chaotic flow with a plane of equilibria. Int J Bifurc Chaos 26:1650098MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Pham VT, Volos C, Kingni ST, Jafari S, Kapitaniak T (2016) Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn 87:2001CrossRefGoogle Scholar
  45. 45.
    Li C, Wang X, Chen G (2017) Diagnosing multistability by offset boosting. Nonlinear Dyn 90:1335MathSciNetCrossRefGoogle Scholar
  46. 46.
    Li C, Sprott JC, Akgul A, Lu Herbert HC, Zhao Y (2017) A new chaotic oscillator with free control. Chaos 27:083101MathSciNetCrossRefGoogle Scholar
  47. 47.
    Li C, Sprott JC, Mei Y (2017) An infinite 2-D lattice of strange attractors. Nonlinear Dyn 89:2629MathSciNetCrossRefGoogle Scholar
  48. 48.
    Li C, Sprott JC (2018) An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys Lett A 382:581–587MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Dawson SP, Grebogi C, Yorke JA, Kan I, Koçak H (1992) Antimonotonicity: inevitable reversals of period-doubling cascades. Phys Lett A 162:249–254MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ren S, Panahi S, Rajagopal K, Akgul A, Pham V-T, Jafari S (2018) A new chaotic flow with hidden attractor: the first hyperjerk system with no equilibrium. Z Naturforsch. Google Scholar
  51. 51.
    Kocarev L, Halle K, Eckert K, Chua L (1993) Experimental observation of antimonotonicity in Chua’s circuit. Int J Bifurc Chaos 3:1051–1055CrossRefzbMATHGoogle Scholar
  52. 52.
    Volos C, Akgul A, Pham VT, Stouboulos I, Kyprianidis I (2017) A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn 84:481–495Google Scholar
  53. 53.
    Bier M, Bountis TC (1984) Remerging Feigenbaum trees in dynamical systems. Phys Lett A 104:239–244MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gervais Dolvis Leutcho
    • 1
    • 2
  • Jacques Kengne
    • 1
  • Romanic Kengne
    • 2
  1. 1.Unité de Recherche d’Automatique et Informatique Appliquée (LAIA), Department of Electrical Engineering, IUT-FV BandjounUniversity of DschangDschangCameroon
  2. 2.Unité de Recherche de Matière Condensée, d’Electronique et de Traitement du Signal (URMACETS), Department of PhysicsUniversity of DschangDschangCameroon

Personalised recommendations