Combination–combination phase synchronization among non-identical fractional order complex chaotic systems via nonlinear control

  • Vijay K. YadavEmail author
  • Ghanshyam Prasad
  • Mayank Srivastava
  • Subir Das


In the present article nonlinear control method is used for combination–combination phase synchronization among fractional order non-identical complex chaotic systems. The control functions are designed with the help of a new lemma and Lyapunov stability theory. The nonlinear control method is found to be very effective and convenient to achieve the said type of synchronization of the non-identical fractional order complex chaotic systems. Numerical simulations are carried out using Adams-Bashforth–Moulton method and the results are depicted through graphs for different particular cases.


Combination–combination phase synchronization Complex chaotic systems Fractional derivative Nonlinear control method 



The authors are extending their heartfelt thanks to the reviewers for their valuable comments towards up-gradation of the revised manuscript.


  1. 1.
    Bagley RL, Calico RA (1991) Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dynam. 14(2):304–311CrossRefGoogle Scholar
  2. 2.
    Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59:1585–1593MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carpinteri A, Cornetti P, Kolwankar KM (2004) Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Solitons Fractals 21:623–632CrossRefzbMATHGoogle Scholar
  4. 4.
    Heaviside O (1971) Electromagnetic theory. Chelsea, New YorkzbMATHGoogle Scholar
  5. 5.
    Sun HH, Abdelwahed AA, Onaral B (1984) Linear approximation for transfer function with a pole of fractional order. IEEE Trans Automat Control 29:441–444CrossRefzbMATHGoogle Scholar
  6. 6.
    Alligood KT, Sauer T, Yorke JA (1997) Chaos: an introduction to dynamical systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  7. 7.
    Srivastava M, Ansari SP, Agrawal SK, Das S, Leung AYT (2014) Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn 76:905–914MathSciNetCrossRefGoogle Scholar
  8. 8.
    Erjaee GH, Taghvafard H (2011) Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun Nonlinear Sci Numer Simulat 16:4079–4088MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li C, Chen G (2004) Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22:549–554CrossRefzbMATHGoogle Scholar
  10. 10.
    Luo C, Wang X (2013) Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71:241–257MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–825MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lakshmanan M, Murali K (1996) Chaos in nonlinear oscillators: controlling and synchronization. World Scientific Pub. Co., SingaporeCrossRefzbMATHGoogle Scholar
  13. 13.
    Murali K, Lakshmanan M (2003) Secure communication using a compound signal using sampled-data feedback. Appl Math Mech 11:1309–1315Google Scholar
  14. 14.
    Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399:354–359CrossRefGoogle Scholar
  15. 15.
    Haung Y (2005) Chaoticity of some chemical attractors: a computer assisted proof. J Math Chem 38:107–117MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Razminia A, Majd VJ, Baleanu D (2011) Chaotic incommensurate fractional order Rössler system: active control and synchronization Adv. in Differ Equ., 15.
  17. 17.
    Abd-Elouahab MS, Hamri NE, Wang J (2010) Chaos control of a fractional-order financial system math problems in engineering. ID 270646.
  18. 18.
    Hegazi AS, Ahmed E, Matouk AE (2013) On chaos control and synchronization of the commensurate fractional order Liu system. Commun Nonlinear Sci Numer Simulat 18:1193–1202MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang XY, He YJ, Wang MJ (2009) Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal Theory Methods Appl 71:6126MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mainieri R, Rehacek J (1999) Projective synchronization in three-dimensional chaotic systems. Phys Rev Lett 82:3042–3045CrossRefGoogle Scholar
  22. 22.
    Li GH (2007) Modified projective synchronization of chaotic system. Chaos, Solitons Fractals 32:1786–1790MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Barajas-Ramirez JG, Chen G, Shieh LS (2003) Hybrid chaos synchronization. Int J Bifur Chaos 13:1197–1216MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu Y, Davids P (2000) Dual synchronization of chaos. Phys Rev E 61:2176–2184CrossRefGoogle Scholar
  25. 25.
    Sun J, Shen Y, Yi Q, Xu C (2013) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23:013140MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wu A, Zhang J (2014) Compound synchronization of fourth order memristor oscillator. Adv Differ Equ 2014:100–106MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang B, Deng F (2014) Double-compound synchronization of six memristor-based Lorenz systems. Nonlinear Dyn 77(4):1519–1530CrossRefGoogle Scholar
  28. 28.
    Luo RZ, Wang YL, Deng SC (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21:043114CrossRefzbMATHGoogle Scholar
  29. 29.
    Runzi L, Yinglan W (2013) Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos 22:023109MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wu Z, Fu X (2013) Combination synchronization of three different order nonlinear systems using active back stepping design. Nonlinear Dyn 73:1863–1872CrossRefzbMATHGoogle Scholar
  31. 31.
    Sun JW, Shen Y, Zhang GD, Xu CJ, Cui GZ (2013) Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn 73:1211–1222MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lin H, Cai J, Wang J (2013) Finite-time combination-combination synchronization for hyperchaotic systems. J Chaos ID 304643.
  33. 33.
    Zhou X, Xiong L, Cai X (2014) Combination–combination synchronization of four nonlinear complex chaotic systems. Abstr Appl Anal ID 953265 1–14Google Scholar
  34. 34.
    Sun J, Shen Y, Wang X, Chen J (2014) Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn 76:383–397MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ojo KS, Njah AN, Olusola OI, Omeike MO (2014) Reduced order projective and hybrid projective combination-combination synchronization of four chaotic Josephson junctions. J Chaos ID 282407:1–9zbMATHGoogle Scholar
  36. 36.
    Ojo KS, Njah AN, Olusola OI, Omeike MO (2014) Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dyn 77:583–595MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Singh AK, Yadav VK, Das S (2017) Dual combination synchronization of the fractional order complex chaotic systems. J Comput Nonlinear Dyn 12:011017-1–8Google Scholar
  38. 38.
    Yadav VK, Agrawal SK, Srivastava M, Das S (2015) Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method. Int J Dyn Control.
  39. 39.
    Das S, Srivastava M, Leung AYT (2013) Hybrid phase synchronization between identical and non-identical three-dimensional chaotic systems using the active control method. Nonlinear Dyn 73:2261–2272CrossRefzbMATHGoogle Scholar
  40. 40.
    Mahmoud GM, Bountis T, Al-Kashif MA, Aly SA (2009) Dynamical properties and synchronization of complex nonlinear equations for detuned lasers. Dyn Syst 24:63–79MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamzbMATHGoogle Scholar
  42. 42.
    Norelys AC, Manuel ADM, Javier AG (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simulat 19:2951–2957MathSciNetCrossRefGoogle Scholar
  43. 43.
    Luo C, Wang XY (2013) Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn 71:241–257MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Liu XJ, Hong L, Yang LX (2014) Fractional-order complex T system: bifurcations, chaos control, and synchronization. Nonlinear Dyn 75:589–602MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yadav VK, Srikanth N, Das S (2016) Dual function projective synchronization of fractional order complex chaotic systems. Optik 127:10527–10538CrossRefGoogle Scholar
  46. 46.
    Singh AK, Yadav VK, Das (2016) Synchronization between fractional order complex chaotic systems. Int J Dyn Control.
  47. 47.
    Luo C, Wang XY (2014) Chaos generated from the fractional-order complex Chen system and its application to digital secure communication. Int J Mod Phys C 24:1350025MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vijay K. Yadav
    • 1
    Email author
  • Ghanshyam Prasad
    • 1
  • Mayank Srivastava
    • 1
  • Subir Das
    • 1
  1. 1.Department of Mathematical SciencesIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations