Skip to main content
Log in

A novel simple no-equilibrium chaotic system with complex hidden dynamics

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

By utilizing a linear state feedback controller in the famous Sprott-S system, a novel no-equilibrium autonomous chaotic system is introduced in this paper. Although the newly proposed system is simple and elegant with eight terms including only one nonlinear term, it exhibits extremely rich and complex hidden dynamical behaviors such as hidden multistability and invariable Lyapunov exponents. Interestingly, the freedom of offset boosting of a variable is obtained by using a controlled constant. The complicated hidden dynamic characteristics of this no-equilibrium system are investigated by means of phase portraits, bifurcation diagrams, Lyapunov exponents, chaos diagram and so on. Furthermore, the corresponding implementation circuit is designed. The Multisim simulations and the hardware experimental results are in agreement with the numerical simulations of the same system on the Matlab platform, which verifies the feasibility of this new no-equilibrium system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Leonov GA, Kuznetsov NV, Vagaitsev VI (2011) Localization of hidden Chua’s attractors. Phys Lett A 375(23):2230–2233

    Article  MathSciNet  Google Scholar 

  2. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  3. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(07):1465–1466

    Article  MathSciNet  Google Scholar 

  4. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  5. Jafari Sajad, Golpayegani Hashemi, SMR, Sprott J,C (2013) Elementary quadratic chaotic flows with no equilibria. Phys Lett A 377(9):699–702

    Article  MathSciNet  Google Scholar 

  6. Jafari S, Sprott JC, Nazarimehr F (2015) Recent new examples of hidden attractors. Eur Phys J Spec Top 224(8):1469–1476

    Article  Google Scholar 

  7. Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov NV, Leonov GA, Prasad A (2016) Hidden attractors in dynamical systems. Phys Rep 637:1–50

    Article  MathSciNet  Google Scholar 

  8. Molaie M, Jafari S, Sprott JC (2013) Simple chaotic flows with one stable equilibrium. Int J Bifurc Chaos 23(11):1350188

    Article  MathSciNet  Google Scholar 

  9. Kingni ST, Jafari S, Simo H, Woafo P (2014) Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur Phys J Plus 129(5):1–16

    Article  Google Scholar 

  10. Kingni ST, Jafari S, Pham VT, Woafo P (2016) Constructing and analysing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors. Math Comput Simul 132:172–182

    Article  Google Scholar 

  11. Jafari S, Sprott JC (2013) Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals Interdiscip J Nonlinear Sci Nonequilib Complex Phenom 57(4):79–84

    MathSciNet  MATH  Google Scholar 

  12. Jafari S, Sprott JC (2015) Erratum to: “Simple chaotic flows with a line equilibrium” [Chaos, Solitons and Fractals 57 (2013) 79–84]. Chaos Solitons Fractals Interdiscip J Nonlinear Sci Nonequilib Complex Phenom 77:341–342

    Google Scholar 

  13. Pham VT, Jafari S, Volos C, Gotthans T, Wang X, Hoang DV (2017) A chaotic system with rounded square equilibrium and with no-equilibrium. Optik Int J Light Electron Opt 130:365–371

    Article  Google Scholar 

  14. Silva CP (1993) Shil’nikov’s theorem—a tutorial. IEEE Trans Circuits Syst I Fundam Theory Appl 40(10):675–682

    Article  Google Scholar 

  15. Tahir FR, Jafari S, Pham V-T, Volos C, Wang X (2015) A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int J Bifurc Chaos 25(04):1550056

    Article  MathSciNet  Google Scholar 

  16. Pham VT, Akgul A, Volos C, Jafari S, Kapitaniak T (2017) Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. AEU Int J Electron Commun 78:134–140

    Article  Google Scholar 

  17. Zhou L, Wang C, Zhou L (2017) A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor. Int J Circuit Theory Appl (2) 46:84–98

    Article  Google Scholar 

  18. Pisarchik AN, Feudel U (2014) Control of multistability. Phys Rep 540(4):167–218

    Article  MathSciNet  Google Scholar 

  19. Brzeski P, Pavlovskaia E, Kapitaniak T, Perlikowski P (2016) Controlling multistability in coupled systems with soft impacts. Int J Mech Sci 127:118–129

    Article  Google Scholar 

  20. Venkatasubramanian V, Ji W (1999) Coexistence of four different attractors in a fundamental power system model. IEEE Trans Circuits Syst Part Fundam Theory Appl 46(3):405–409

    Article  Google Scholar 

  21. Cushing JM, Henson SM, Blackburn CC (2007) Multiple mixed-type attractors in a competition model. J Biol Dyn 1(4):347

    Article  MathSciNet  Google Scholar 

  22. Yuan F, Wang G, Wang X (2016) Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Chaos Interdiscip J Nonlinear Sci 26(7):073107

    Article  MathSciNet  Google Scholar 

  23. Bao BC, Bao H, Wang N, Chen M, Xu Q (2017) Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94:102–111

    Article  MathSciNet  Google Scholar 

  24. Upadhyay RK (2003) Multiple attractors and crisis route to chaos in a model food-chain. Chaos Solitons Fractals 16(5):737–747

    Article  MathSciNet  Google Scholar 

  25. Morfu S, Nofiele B, Marquié P (2007) On the use of multistability for image processing. Phys Lett A 367(3):192–198

    Article  Google Scholar 

  26. Skardal PS, Restrepo JG (2014) Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans. Chaos Interdiscip J Nonlinear Sci 24(4):043126

    Article  Google Scholar 

  27. Wang Z, Cang S (2012) A hyperchaotic system without equilibrium. Nonlinear Dyn 69(1–2):531–537

    Article  MathSciNet  Google Scholar 

  28. Lin Y, Wang C, Haizhen HE, Zhou LL (2016) A novel four-wing non-equilibrium chaotic system and its circuit implementation. Pramana 86(4):801–807

    Article  Google Scholar 

  29. Pham VT, Vaidyanathan S, Volos C, Jafari S, Kingni ST (2016) A no-equilibrium hyperchaotic system with a cubic nonlinear term. Optik Int J Light Electron Opt 127(6):3259–3265

    Article  Google Scholar 

  30. Pham VT, Wang X, Jafari S, Volos C, Kapitaniak T (2017) From Wang–Chen system with only one stable equilibrium to a new chaotic system without equilibrium. Int J Bifurc Chaos 27(6):1750097

    Article  MathSciNet  Google Scholar 

  31. Hu X, Liu C, Liu L, Ni J, Li S (2016) Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn 86(3):1725–1734

    Article  Google Scholar 

  32. Jafari S, Pham VT, Kapitaniak T (2016) Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int J Bifurc Chaos 26(02):1650031

    Article  MathSciNet  Google Scholar 

  33. Sprott JC (2011) A proposed standard for the publication of new chaotic systems. Int J Bifurc Chaos 21(09):2391–2394

    Article  Google Scholar 

  34. Sprott JC (1994) Some simple chaotic flows. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 50(2):R647–R650

    MathSciNet  Google Scholar 

  35. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D Nonlinear Phenom 16(3):285–317

    Article  MathSciNet  Google Scholar 

  36. Melbourne I (2004) A new test for chaos in deterministic systems. Proc Math Phys Eng Sci 460(2042):603–611

    Article  MathSciNet  Google Scholar 

  37. Li C, Chen S, Zhu H (2009) Circuit implementation and synchronization of an improved system with invariable Lyapunov exponent spectrum. Acta Phys Sin 58(4):38–43

    MATH  Google Scholar 

  38. Li C, Wang J, Hu W (2012) Absolute term introduced to rebuild the chaotic attractor with constant Lyapunov exponent spectrum. Nonlinear Dyn 68(4):575–587

    Article  MathSciNet  Google Scholar 

  39. Li C, Sprott JC (2016) Variable–boostable chaotic flows. Optik Int J Light Electron Opt 127(22):10389–10398

    Article  Google Scholar 

  40. Lin Z, Yu S, Lü J, Cai S, Chen G (2015) Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans Circuits Syst Video Technol 25(7):1203–1216

    Article  Google Scholar 

  41. Rosa ML, Rabinovich MI, Huerta R, Abarbanel HDI, Fortuna L (2000) Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh–Rose models. Phys Lett A 266(1):88–93

    Article  Google Scholar 

  42. Gambuzza LV, Buscarino A, Fortuna L, Frasca M (2015) Memristor-based adaptive coupling for consensus and synchronization. IEEE Trans Circuits Syst I Regul Pap 62(4):1175–1184

    Article  MathSciNet  Google Scholar 

  43. Gambuzza LV, Frasca M, Fortuna L, Ntinas V, Vourkas I, Sirakoulis GC (2017) Memristor crossbar for adaptive synchronization. IEEE Trans Circuits Syst I Regul Pap PP(99):1–10

    Google Scholar 

  44. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    Article  Google Scholar 

  45. Larrondo HA, González CM, Martín MT, Plastino A, Rosso OA (2005) Intensive statistical complexity measure of pseudorandom number generators. Phys A Stat Mech Appl 356(1):133–138

    Article  Google Scholar 

  46. Shen EH, Cai ZJ, Fan-Ji GU (2005) Mathematical foundation of C_0 complexity. Appl Math Mech 26(9):1083–1090

    MathSciNet  Google Scholar 

  47. Staniczenko PP, Lee CF, Jones NS (2009) Rapidly detecting disorder in rhythmic biological signals: a spectral entropy measure to identify cardiac arrhythmias. Phys Rev E Stat Nonlinear Soft Matter Phys 79(1 Pt 1):011915

    Article  Google Scholar 

  48. Jafari MA, Mliki E, Akgul A, Pham VT, Kingni ST, Wang X, Jafari S (2017) Chameleon: the most hidden chaotic flow. Nonlinear Dyn 88:1–15

    Article  MathSciNet  Google Scholar 

  49. Pham VT, Kingni ST, Volos C, Jafari S, Kapitaniak T (2017) A simple three-dimensional fractional-order chaotic system without equilibrium: dynamics, circuitry implementation, chaos control and synchronization. AEU Int J Electron Commun 78:220–227

    Article  Google Scholar 

  50. Fortuna L, Arena P, Balya D, Zarandy A (2001) Cellular neural networks: a paradigm for nonlinear spatio-temporal processing. IEEE Circuits Syst Mag 1(4):6–21

    Article  Google Scholar 

  51. Buscarino A, Fortuna L, Frasca M, Sciuto G (2011) Design of time-delay chaotic electronic circuits. IEEE Trans Circuits Syst I Regul Pap 58(8):1888–1896

    Article  MathSciNet  Google Scholar 

  52. Pham VT, Volos C, Jafari S, Kapitaniak T (2017) Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn 87(3):2001–2010

    Article  Google Scholar 

  53. Wang C, Liu X, Xia H (2017) Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N \(+\) 1-scroll chaotic attractors system. Chaos Interdiscip J Nonlinear Sci 27(3):033114

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundations of China under Grant Nos. 61471310 and 61176032, and the Natural Science Foundations of Hunan Province, China under Grant No. 2015JJ2142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zeng, Y., Li, Z. et al. A novel simple no-equilibrium chaotic system with complex hidden dynamics. Int. J. Dynam. Control 6, 1465–1476 (2018). https://doi.org/10.1007/s40435-018-0413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0413-3

Keywords

Navigation