Skip to main content

Advertisement

Log in

Stability analysis and optimal control of avian influenza virus A with time delays

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this research article we have developed a mathematical model to describe the spread of avian influenza A (H7N9) virus from the birds to human. We also consider the incubation periods of avian influenza A (H7N9) virus in this model with different time delay in the infective avian and human populations. By analyzing behaviour of the model, we calculate the basic reproduction number and investigate the local and global stability of equilibria of the system. Here we also set up an optimal control problem and used a quadratic control to reduce the spread of the disease and the cost of treatment. Computer simulations are carried out to explain the analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexander DJ (2007) An overview of the epidemilogy of avian influenza. Vaccine 25:5637–5644

    Article  Google Scholar 

  2. Bao C, Cui L, Zhou M, Wang LH (2013) Live-animal markets and influenza A (H7N9) virus infection. New Eng J Med 368:2337–2339

    Article  Google Scholar 

  3. Chen Y, Liang W, Yang S, Wu N, Gao H (2013) Human infections with the emerging avian influenza, A H7N9 virus from wet market poultry; clinical analysis and characterissation of viral genome. Lan 381:1916–1925

    Article  Google Scholar 

  4. Geo H (2013) Clinical finding in 111 cases of influenza A(H7N9) virus infection. New Eng J Med 368:2277–2285

    Article  Google Scholar 

  5. Kim KI, Lin Z, Zhang L (2010) Avian-human influenza epidemic model with diffusion. Nonlin Anal Real World Appl 11:313–322

    Article  MathSciNet  MATH  Google Scholar 

  6. Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H, Xiang N, Chen E et al (2014) Epidemiology of human infections with avian influenza A (H7N9) virus in China. New Eng J Med 370:520–532

    Article  Google Scholar 

  7. World Health Organisation (WHO) (2014) Human infection with avian influenza A (H7N9) virus (update). http://www.who.int/csr/don/2014-02-24/en/

  8. World Health Organization (WHO) (2015) Influenza. http://www.who.int/topics/influenza/en/

  9. World Organisation for Animal Health (OIE) (2013) OIE expert mission finds live bird markets play a key role in poultry and human infections with influenza A (H7N9). Paris. http://www.oie.int/en/for-the-media/press-releases/detail/article/oie-expertmission-finds-live-bird-markets-play-a-key-role-in-poultry-andhuman-infections-with-infl/

  10. Arqub OA, Ajou AE (2013) Solution of the fractional epidemic model by homotopy analysis method. J King Saud Univ Sci 25:73–81

    Article  Google Scholar 

  11. Huang G, Takeuchi Y, Ma W, Wei D (2010) Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bull Math Biol 72:1192–1207

    Article  MathSciNet  MATH  Google Scholar 

  12. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans animals. Princeton University Press, Princeton

    MATH  Google Scholar 

  13. Smadi MA, Freihat A, Arqub OA, Shawagfeh N (2015) A novel multistep generalized differential transform method for solving fractional-order Lu Chaotic and hyperchaotic systems. J Comput Anal Appl 19:713–724

    MathSciNet  MATH  Google Scholar 

  14. Iwami S, Takeuchi Y, Liu X (2007) Avian-human influenza epidemic model. Math Biosci 207:1–25

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwami S, Takeuchi Y, Korobeinikov A, Liu X (2008) Prevention of avian influenza epidemic: what policy should we choose? J Theor Biol 252(4):732–741

    Article  MathSciNet  Google Scholar 

  16. Iwami S, Takeuchi Y, Liu X (2009) Avian flu pandemic: can we prevent it? J Theor Biol 257:181–190

    Article  MathSciNet  Google Scholar 

  17. Iwami S, Takeuchi Y, Liu X, Nakaoka S (2009) A geographical spread of vaccine-resistance in avian influenza epidemics. J Theor Biol 259:219–228

    Article  MathSciNet  Google Scholar 

  18. Kwon JS, Lee HJ, Lee DH (2008) Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res 133(2):187–194

    Article  Google Scholar 

  19. Wang H, Feng Z, Shu Y (2008) Probable limited person-to-person transmission of highly pathogenic avian influenza A(H5N1) virus in China. The Lancet 371(9622):1427–1434

    Article  Google Scholar 

  20. Jung E, Iwami S, Takeuchi Y, Jo TC (2009) Optimal control strategy for prevention of avian influenza pandemic. J Theor Biol 260:220–229

    Article  MathSciNet  Google Scholar 

  21. Gumel AB (2009) Global dynamics of a two-strain avian influenza model. Int J Comput Math 86:85–108

    Article  MathSciNet  MATH  Google Scholar 

  22. Agusto FB (2013) Optimal isolation control stategies and cost-effectveness analysis of a two-strain avian influenza. Biosystem 113:155–164

    Article  Google Scholar 

  23. Ma X, Wang W (2010) A discrete model of avian influenza with seasonal reproduction and transmission. J Biol Dyn 4:296–314

    Article  MathSciNet  MATH  Google Scholar 

  24. Bourouiba L, Gourley SA, Liu R, Wu J (2011) The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza. SIAM J Appl Math 71:487–516

    Article  MathSciNet  MATH  Google Scholar 

  25. Gourley SA, Liu R, Wu J (2010) Spatiotemporal distributions of migratory birds: patchy models with delay. SIAM J Appl Dyn Syst 9:589–610

    Article  MathSciNet  MATH  Google Scholar 

  26. Tuncer N, Martcheva M (2013) Modeling seasonality in avian influenza H5N1. J Biol Syst 21:130

    Article  MathSciNet  MATH  Google Scholar 

  27. Chong NS, Tchuenche JM, Smith RJ (2014) A mathematical model of avian influenza wiyh half-saturated incidence. Theory Biosci 133:23–38

    Article  Google Scholar 

  28. Liu S, Ruan S, Zhang X (2015) On avian influenza epidemic models with time delay. Theory Biosci 134:75–82

    Article  Google Scholar 

  29. Cooke KL, Van Den Driessche P (1996) Analysis of an SEIRS epidemic model with two dealys. J Math Biol 35:240–260

    Article  MathSciNet  MATH  Google Scholar 

  30. Beretta E, Hara T, Ma W, Takeuchi Y (2001) Global aymptotical stability of an SIR epidemic model with distributed time delay. Nonlinear Anal 47:4107–4115

    Article  MathSciNet  MATH  Google Scholar 

  31. Beretta E, Takeuchi Y (1995) Global stability of an SIR model with time dealys. J Math Biol 33:250–260

    Article  MathSciNet  MATH  Google Scholar 

  32. Ruan S, Wei J (2003) On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn Contin Discrete Impulse Syst Ser A Math Anal 10:863–874

    MathSciNet  MATH  Google Scholar 

  33. Ruan S, Xiao D, Beier JC (2008) On the delayed RossMacdonald model for malaria transmission. Bull Math Biol 70:1098–1114

    Article  MathSciNet  MATH  Google Scholar 

  34. Samanta GP (2010) Permanence and extinction for a nonautonomous avian-human influenza epidemic model with distributed time delay. Math Comput Model 52:1794–1811

    Article  MathSciNet  MATH  Google Scholar 

  35. Hale JK (1969) Ordinary Differential equations. Wiley, New York

    MATH  Google Scholar 

  36. Hale JK (1977) Theory of functional Differential Equations. Springer, Heidelberg

    Book  MATH  Google Scholar 

  37. Anderson RM, May RK (1991) Infections diseases of humans; dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  38. Blayneh K, Cao Y, Kwon HD (2009) Optimal control of vector-borne disease: treatment and prevention. Disc Cont Dynam Sys Ser B 11:1–31

    MathSciNet  MATH  Google Scholar 

  39. Lcnhart S, Workman JT (2007) Optimal control applied to biological mathods. Chapman and Hall/CRC, London

    Google Scholar 

  40. Joshi HR (2002) Optimal control of an HIV immunology model. Optim Control Appl Methods 23:199–213

    Article  MathSciNet  MATH  Google Scholar 

  41. Sharma S, Samanta GP (2013) Dynamical behaviour of a tumor-immune system with chemotherapy and optimal control. J Nonlinear Dyn. https://doi.org/10.1155/2013/608598

  42. Sharma S, Samanta GP (2015) An analysis of the dynamics of a tumore-immune system with chemotherapy and immunotherapy and quadratic optimal control. Differ Eq Dyn Syst. https://doi.org/10.1007/s12591-015-0250-1

  43. Sharma S, Samanta GP (2014) Analysis of a Chlamydia model. J Biol Syst 22(4):1–32

    Article  MATH  Google Scholar 

  44. Sharma S, Samanta GP (2016) Analysis of a hand-foot-mouth disease model. Int J Biomath. https://doi.org/10.1142/S1793524517500164

  45. Swan GW (1984) Applications of optimal control theory in biomedicine. Marcel Dekker, New York

    MATH  Google Scholar 

  46. Tchuenche JM, Khamis SA, Agusto FB, Mpeshe SC (2011) Optimal control and sensitivity analysis of an influenza model with treatment and vaccination. Acta Biotheor 59:1–28

    Article  Google Scholar 

  47. Zaman G, Kang YH, Jung H (2008) Stability analysis and optimal vaccination of an SIR epidemic model. Biosystem 93:240–249

    Article  Google Scholar 

  48. Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  MATH  Google Scholar 

  49. Lukes D (1982) Differential equations: classical to controlled, mathematics in science and engineering. Academic Press, New York

    Google Scholar 

  50. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EE (1962) The mathematical theory of optimal process. Philadelphia, Philadelphia

    Google Scholar 

Download references

Acknowledgements

We would like to thank Department of Mathematics, IIEST, Shibpur for financial support to run the work. The second author is thankful to the University Grants Commission, India for providing SRF (RGNF). The third author acknowledges financial support from UGC, India (MRP No. - PSW-128/15-16 (ERO)). We would also like to thank two anonymous reviewers and editors for their comments and suggestions that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Mondal, A., Pal, A.K. et al. Stability analysis and optimal control of avian influenza virus A with time delays. Int. J. Dynam. Control 6, 1351–1366 (2018). https://doi.org/10.1007/s40435-017-0379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0379-6

Keywords

Navigation