High-precision microfluidic pressure control through modulation of dual fluidic resistances

Abstract

This work presents an approach to the modulation of dual fluidic resistances for long-term, high-speed, and high precision (less than 0.5% steady-state error) control of the inlet pressure of a microfluidic device. This is accomplished through independent controls of dual variable resistances in a fluid network between a pressurized reservoir and a microfluidic device. We show the superior characteristics of the system with dual resistance modulation by experimentally comparing our new model with our previous approach. We demonstrate the performance of the controlled system and address the long-term stability and robustness. This system can be utilized in a variety of applications that require high-precision, high-speed, and long-term controls of microfluidic flows, including chemical synthesis, cell sorting, energy harvesting optofluidics, microbial fuel cells, and multiscale biological investigation of cellular or tissue level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17(3):173–181

    Article  Google Scholar 

  2. 2.

    Kim Y, Langer R (2015) Microfluidics in nanomedicine. Rev Cell Biol Mol Med 1:127–152

  3. 3.

    Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619

    Article  Google Scholar 

  4. 4.

    Losey MW, Jackman RJ, Firebaugh SL, Schmidt M, Jensen KF (2002) Design and fabrication of microfluidic devices for multiphase mixing and reaction. J Microelectromech Syst 11(6):709–717

    Article  Google Scholar 

  5. 5.

    Mitrovski SM, Elliott LC, Nuzzo RG (2004) Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H\(_{2}\)–O\(_{2}\) fuel cell. Langmuir 20(17):6974–6976

    Article  Google Scholar 

  6. 6.

    Kim Y, Messner WC, LeDuc PR (2012) Disruptive microfluidics: from life sciences to world health to energy. Disrupt Sci Technol 1(1):41–53

    Article  Google Scholar 

  7. 7.

    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  8. 8.

    Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2(3):131–134

    Article  Google Scholar 

  9. 9.

    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  10. 10.

    Martin M, Blu G, Eon C, Guiochon G (1975) The use of syringe-type pumps in liquid chromatography in order to achieve a constant flow-rate. J Chromatogr A 112:399–414

    Article  Google Scholar 

  11. 11.

    Li Z, Mak SY, Sauret A, Shum HC (2014) Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab Chip 14(4):744–749

    Article  Google Scholar 

  12. 12.

    Zeng W, Jacobi I, Beck DJ, Li S, Stone HA (2015) Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. Lab Chip 15(4):1110–1115

    Article  Google Scholar 

  13. 13.

    Lee J, Rahman F, Laoui T, Karnik R (2012) Bubble-induced damping in displacement-driven microfluidic flows. Phys Rev E 86(2):026301

    Article  Google Scholar 

  14. 14.

    Kang YJ, Yang S (2012) Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments. Lab Chip 12(10):1881–1889

    Article  Google Scholar 

  15. 15.

    Chien R-L, Parce WJ (2001) Multiport flow-control system for lab-on-a-chip microfluidic devices. Fresenius’ J Anal Chem 371(2):106–111

    Article  Google Scholar 

  16. 16.

    Kuczenski B, LeDuc PR, Messner WC (2007) Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network. Lab Chip 7(5):647–649

    Article  Google Scholar 

  17. 17.

    Lima JL, Santos JL, Dias AC, Ribeiro MF, Zagatto EA (2004) Multi-pumping flow systems: an automation tool. Talanta 64(5):1091–1098

    Article  Google Scholar 

  18. 18.

    Lake JR, Heyde KC, Ruder WC (2017) Low-cost feedback-controlled syringe pressure pumps for microfluidics applications. PLOS ONE 12(4):e0175089

    Article  Google Scholar 

  19. 19.

    Fütterer C et al (2004) Injection and flow control system for microchannels. Lab Chip 4(4):351–356

    Article  Google Scholar 

  20. 20.

    Lapa RA, Lima JL, Reis BF, Santos JL, Zagatto EA (2002) Multi-pumping in flow analysis: concepts, instrumentation, potentialities. Anal Chim Acta 466(1):125–132

    Article  Google Scholar 

  21. 21.

    Kim Y, LeDuc P, Messner W (2013) Modeling and control of a nonlinear mechanism for high performance microfluidic systems. IEEE Trans Control Syst Technol 21(1):203–211

    Article  Google Scholar 

  22. 22.

    Kim Y, Kuczenski B, LeDuc PR, Messner WC (2009) Modulation of fluidic resistance and capacitance for long-term, high-speed feedback control of a microfluidic interface. Lab Chip 9(17):2603–2609

    Article  Google Scholar 

  23. 23.

    Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3):515–545

    Article  Google Scholar 

  24. 24.

    Kim Y et al (2014) Mechanochemical actuators of embryonic epithelial contractility. Proc Natl Acad Sci 111(40):14366–14371

    Article  Google Scholar 

  25. 25.

    Hovell CM, Sei YJ, Kim Y (2015) Microengineered vascular systems for drug development. J Lab Autom 20:251–258

  26. 26.

    Sei Y, Justus K, LeDuc P, Kim Y (2014) Engineering living systems on chips: from cells to human on chips. Microfluidics Nanofluidics 16(5):907–920

    Article  Google Scholar 

  27. 27.

    Kim Y, Joshi SD, Messner WC, LeDuc PR, Davidson LA (2011) Detection of dynamic spatiotemporal response to periodic chemical stimulation in a Xenopus embryonic tissue. PloS ONE 6(1):e14624

    Article  Google Scholar 

  28. 28.

    Kim Y et al (2013) Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano 7(11):9975–9983

    Article  Google Scholar 

  29. 29.

    Kim Y et al (2012) Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 12(7):3587–3591

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the startup resources of Georgia Institute of Technology (Y.K.) and by the National Science Foundation under CAREER CMMI 1653006 (Y.K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to YongTae Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toth, M.J., Kawahara, T. & Kim, Y. High-precision microfluidic pressure control through modulation of dual fluidic resistances. Int. J. Dynam. Control 6, 1175–1182 (2018). https://doi.org/10.1007/s40435-017-0378-7

Download citation

Keywords

  • Pressure control
  • Fluidic resistance
  • Nonlinear
  • Feedback control
  • Microfluidics