Skip to main content
Log in

Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractional order Newton–Leipnik chaotic system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This manuscript, presents the fractional order disturbances observer based adaptive sliding mode hybrid projective synchronization of commensurate and incommensurate fractional order Newton–Leipnik chaotic system with disturbance. Firstly, a fractional order disturbance observer (FODO) based on adaptive sliding mode control laws for a fractional order Newton–Leipnik system with unknown bounded disturbance is studied. The appropriate control gain parameters are chosen such that the disturbance observer can approximate the unknown disturbance well. Further, we design a simple sliding mode surface based on sliding mode control technique incorporating with the designed fractional order disturbance observer for developing a bounded hybrid projective synchronization control scheme. Numerical simulation results are given to demonstrate the validity and effectiveness of the proposed sliding mode control scheme in the presence of external bounded unknown disturbance. To analyse the superiority of proposed methodology we have compared our results with earlier published results as well. Moreover, as an application, the proposed scheme is then applied to a secure communication system. Simulation results verify the proposed schemes success in the communication application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  2. Hilfer R (ed) (2001) Applications of fractional calculus in physics. World Scientific, Hackensack

    MATH  Google Scholar 

  3. Bagley RL, Calico RA (1991) Fractional order state equations for the control of viscoelastically damped structures. J Guid Control Dyn 14:304–311. https://doi.org/10.2514/3.20641

    Article  Google Scholar 

  4. Koeller RC (1984) Application of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299. https://doi.org/10.1115/1.3167616

    Article  MathSciNet  MATH  Google Scholar 

  5. Koeller RC (1986) Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta Mech 58:251–264. https://doi.org/10.1007/BF01176603

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun HH, Abdelwahad AA, Onaral B (1984) Linear approximation of transfer function with a pole of fractional order. IEEE Trans Autom Control 29:441–444. https://doi.org/10.1109/TAC.1984.1103551

    Article  Google Scholar 

  7. Ichise M, Nagayanagi Y, Kojima T (1971) An analog simulation of noninteger order transfer functions for analysis of electrode process. J Electroanal Chem 33:253–265. https://doi.org/10.1016/S0022-0728(71)80115-8

    Article  Google Scholar 

  8. Heaviside O (1971) Electromagnetic theory. Chelsea, New York

    MATH  Google Scholar 

  9. Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York. https://doi.org/10.1007/978-1-4757-4067-7

  10. Hoppensteadt FC (2000) Analysis and simulation of chaotic systems. Springer, New York

    MATH  Google Scholar 

  11. Li C, Chen G (2004) Chaos and hyperchaos in the fractional order Rössler equation. Physica A 341:55–61. https://doi.org/10.1016/j.physa.2004.04.113

    Article  MathSciNet  Google Scholar 

  12. Wu X, Li J, Chen G (2008) Chaos in the fractional order unified system and its synchronization. J Frank Inst 345:392–401. https://doi.org/10.1016/j.jfranklin.2007.11.003

    Article  MATH  Google Scholar 

  13. Deng W, Li C (2008) The evolution of chaotic dynamics for fractional unified system. Phys Lett A 372:401–407. https://doi.org/10.1016/j.physleta.2007.07.049

    Article  MATH  Google Scholar 

  14. Yu Y, Li H-X, Wang S, Yu J (2009) Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42:1181–1189. https://doi.org/10.1016/j.chaos.2009.03.016

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun K, Wang X, Sprott JC (2010) Bifurcation and chaos in fractional-order simplified Lorenz system. Int J Bifurcat Chaos 20:1209–1219. https://doi.org/10.1142/S0218127410026411

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu Y, Gu R, Zhang H, Li D (2012) Chaos in diffusionless Lorenz system with a fractional order and its control. Int J Bifurcat Chaos 22:1250088. https://doi.org/10.1142/S0218127412500885

    Article  MATH  Google Scholar 

  17. Hartley TT, Lorenzo CF, Qammer HK (1995) Chaos in a fractional order Chua’s system. IEEE Trans CAS-I 42:485–490. https://doi.org/10.1109/81.404062

    Article  Google Scholar 

  18. Arena P, Caponetto R, Fortuna L, Porto D (1997) Chaos in a fractional order Duffing system. In: Proceedings of the ECCTD, Budapest, pp 1259–1262

  19. Pecora LM, Carroll TL (1990) Synchronization of chaotic systems. Phys Rev 64:821–4. https://doi.org/10.1103/PhysRevLett.64.821

    MathSciNet  MATH  Google Scholar 

  20. Vincent UE (2008) Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos Solitons Fractals 37(4):1065–1075. https://doi.org/10.1016/j.chaos.2006.10.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Khan A, Shikha (2016) Hybrid function projective synchronization of chaotic systems via adaptive control. Int J Dyn Control 1–8. https://doi.org/10.1007/s40435-016-0258-6

  22. Khan A, Tyagi A (2016) Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int J Dyn Control 1–9. https://doi.org/10.1007/s40435-016-0265-7

  23. Chen A et al (2006) Generating hyperchaotic L attractor via state feedback control. Phys A Stat Mech Appl 364:103–110

    Article  Google Scholar 

  24. Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279. https://doi.org/10.1007/s11633-012-0644-2

    Article  Google Scholar 

  25. Li R, Chen W (2014) Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems. Nonlinear Dyn 76:785–795. https://doi.org/10.1007/s11071-013-1169-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang S, Yu YG (2012) Generalized projective synchronization of fractional order chaotic systems with different dimensions. Chin Phys Lett 29:020505. https://doi.org/10.1088/0256-307X/29/2/020505

    Article  Google Scholar 

  27. Zhu H, Zhou SB, He ZS (2009) Chaos synchronization of the fractional-order Chens system. Chaos Solitons Fractals 41:2733–2740. https://doi.org/10.1016/j.chaos.2008.10.005

    Article  MATH  Google Scholar 

  28. Zhang RX, Yang SP (2008) Designing synchronization schemes for a fractional-order hyperchaotic system. Acta Phys Sin 57:6837–6843

    MATH  Google Scholar 

  29. Lan YH, Zhou Y (2013) Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst Control Lett 62:1143–1150. https://doi.org/10.1016/j.sysconle.2013.09.007

    Article  MathSciNet  MATH  Google Scholar 

  30. Li CP, Deng WH, Xu D (2006) Chaos synchronization of the Chua system with a fractional order. Physica A 360:171–185. https://doi.org/10.1016/j.physa.2005.06.078

    Article  MathSciNet  Google Scholar 

  31. Li CG, Liao XF, Yu JB (2003) Synchronization of fractional order chaotic systems. Phys Rev E 68:067203. https://doi.org/10.1103/PhysRevE.68.067203

    Article  Google Scholar 

  32. Wang JW, Zhang YB (2009) Synchronization in coupled nonidentical incommensurate fractional-order systems. Phys Lett A 374:202–207. https://doi.org/10.1016/j.physleta.2009.10.051

    Article  MATH  Google Scholar 

  33. Agrawal SK, Srivastava M, Das S (2012) Synchronization of fractional order chaotic systems using active control method. Chaos Solitons Fractals 45:737–752. https://doi.org/10.1016/j.chaos.2012.02.004

    Article  Google Scholar 

  34. Tavazoei MS, Haeri M (2008) Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387:57–70. https://doi.org/10.1016/j.physa.2007.08.039

    Article  Google Scholar 

  35. Sabanovic A (2011) Variable structure systems with sliding modes in motion control—a survey. IEEE Trans Ind Inform 7:212–223. https://doi.org/10.1016/j.physa.2007.08.039

    Article  Google Scholar 

  36. Hosseinnia SH, Ghaderi R, Ranjbar AN, Mahmoudian M, Momani S (2010) Sliding mode synchronization of an uncertain fractional order chaotic system. Comput Math Appl 59:1637–1643. https://doi.org/10.1016/j.camwa.2009.08.021

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang LG, Yan Y (2014) Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dyn 76:1761–1767. https://doi.org/10.1007/s11071-014-1244-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Li CL, Su KL, Wu L (2013) Adaptive sliding mode control for synchronization of a fractional-order chaotic system. J Comput Nonlinear Dyn 8:031005. https://doi.org/10.1115/1.4007910

    Article  Google Scholar 

  39. Liu L, Ding W, Liu CX, Ji HG, Cao CQ (2014) Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dyn 76:2059–2071. https://doi.org/10.1007/s11071-014-1268-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9:706–710. https://doi.org/10.1109/TMECH.2004.839034

    Article  Google Scholar 

  41. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47:932–938. https://doi.org/10.1109/41.857974

    Article  Google Scholar 

  42. Chen M, Chen WH, Wu QX (2014) Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Sci China Inf Sci 57:012207. https://doi.org/10.1007/s11432-012-4695-3

    MATH  Google Scholar 

  43. Chen M, Yu J (2015) Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn. https://doi.org/10.1007/s11071-2268-x

  44. Chen M, Yu J (2015) Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin J Aeronaut 28:853–864. https://doi.org/10.1016/j.cja.2015.04.020

    Article  Google Scholar 

  45. Chen M, Ren BB, Wu QX, Jiang CS (2015) Anti disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China Inf Sci 58:070202. https://doi.org/10.1007/s11432-015-5337-3

    MathSciNet  Google Scholar 

  46. Shao S, Chen M, Yan X (2016) Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn 83(4):1855–1866. https://doi.org/10.1007/s11071-015-2450-1

    Article  MathSciNet  MATH  Google Scholar 

  47. Monje CA, Chen YQ, Vinagre BM, Xue DY, FeliuBatlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer, London. https://doi.org/10.1016/j.amc.2006.08.163

    Book  MATH  Google Scholar 

  48. Li CP, Deng WH (2007) Remarks on fractional derivatives. Appl Math Comput 187:777–784

    MathSciNet  MATH  Google Scholar 

  49. Long-Jye S et al (2008) Chaos in the Newton–Leipnik system with fractional order. Chaos Solitons Fractals 36(1):98–103. https://doi.org/10.1016/j.chaos.2006.06.013

    Article  MathSciNet  MATH  Google Scholar 

  50. Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022

    Article  MathSciNet  Google Scholar 

  51. Li L, Sun YG (2015) Adaptive fuzzy control for nonlinear fractional-order uncertain systems with unknown uncertainties and external disturbance. Entropy 17:5580–5592. https://doi.org/10.3390/e17085580

    Article  Google Scholar 

  52. Chen M, Chen WH, Wu QX (2014) Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Sci China Inf Sci 57:012207. https://doi.org/10.1007/s11432-012-4695-3

    MATH  Google Scholar 

  53. Zhang K, Wang H, Fang H (2012) Feedback control and hybrid projective synchronization of a fractional-order Newton–Leipnik system. Commun Nonlinear Sci Numer Simul 17(1):317–328. https://doi.org/10.1016/j.cnsns.2011.04.003

    Article  MathSciNet  MATH  Google Scholar 

  54. Li C et al (2013) Robust synchronization for a class of fractional-order dynamical system via linear state variable. Indian J Phys 87(7):673–678. https://doi.org/10.1007/s12648-013-0267-7

    Article  Google Scholar 

  55. Jia Q (2008) Chaos control and synchronization of the Newton–Leipnik chaotic system. Chaos Solitons Fractals 35(4):814–824. https://doi.org/10.1016/j.chaos.2006.05.069

    Article  Google Scholar 

  56. Khan MA (2012) Adaptive synchronization of two coupled Newton-Leipnik systems with uncertain parameter. Int J Basic Appl Sci 1(4):439–447. https://doi.org/10.14419/ijbas.v1i4.171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Tyagi, A. Fractional order disturbance observer based adaptive sliding mode hybrid projective synchronization of fractional order Newton–Leipnik chaotic system. Int. J. Dynam. Control 6, 1136–1149 (2018). https://doi.org/10.1007/s40435-017-0370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0370-2

Keywords

Navigation