In this section, we present two examples where physically motivated higher-order terms lead to mathematically “better” solutions to the regularised problem than to the original problem. Additionally, we consider the regularisation using stochastic perturbations instead of higher-order terms, which requires less assumptions on the given data, compared to the problem without a stochastic perturbation, to obtain existence and uniqueness of solutions.
Example 1: backward–forward heat equation
The first example is the so-called backward–forward heat equation
$$\begin{aligned} \partial _t u - \nabla \cdot \phi (\nabla u)=0, \end{aligned}$$
(3)
where u represents the temperature and \(\phi \) is a nonmonotone function representing the heat flux density. This equation occurs, for example, in cases where Fourier’s law of heat conduction cannot be applied to simplify the general heat equation. Apart from thermodynamics, it is also very important for the so-called anisotropic diffusion considered in image processing.
There are several articles proving existence of measure-valued solutions to the backward-forward heat equation, for example, Slemrod [10] and Thanh et al. [11]. In both articles, the method of regularisation is used to prove existence. In the first work [10], the term \(\varepsilon \; \varDelta ^2 u\) is added to the left-hand side, where \(\varepsilon >0\) is small. For the regularised equation
$$\begin{aligned} \partial _t u_\varepsilon - \nabla \cdot \phi (\nabla u_\varepsilon ) + \varepsilon \; \varDelta ^2 u_\varepsilon = 0, \end{aligned}$$
(4)
existence of weak solutions can be proven. The limit \(\varepsilon \rightarrow 0\) then yields the existence of a measure-valued solution to Eq. (3). As mentioned in Sect. 2 on solution concepts, measure-valued solutions are weaker than weak solutions. Thus, we get “better” solutions to the regularised equation with a higher-order term than to the original equation without this higher-order term.
In the second work [11], the term \(-\,\varepsilon \;\varDelta \partial _t u\) is added to the left-hand side of the backward–forward heat equation. Again, existence of weak solutions can be shown for the regularised equation
$$\begin{aligned} \partial _t u_\varepsilon -\nabla \cdot \phi (\nabla u_\varepsilon ) - \varepsilon \;\varDelta \partial _t u_\varepsilon =0, \end{aligned}$$
(5)
but in the limit \(\varepsilon \rightarrow 0\), we again only end up with a measure-valued solution to the original equation.
So far, the existence of weak solutions to the backward–forward heat equation is only known in a special case, where the spatial dimension is equal to one and where the heat flux density \(\phi \) is piecewise linear (cf. [12, 13]). Besides, uniqueness of solutions is also a problem. Uniqueness of measure-valued solutions cannot be expected due to the solution concept, and in the case mentioned above, where existence of weak solutions is known, it can additionally be proven that there exist infinitely many weak solutions. So far, uniqueness is only known for a special kind of classical solutions and again only in the case of one spatial dimension and for special cases of the heat flux density \(\phi \) (cf. [14, 15]). Whether solutions of this kind do even exist, could, to the best knowledge of the authors, not yet be proven.
These observations raise one central question of this article: Is passing to the limit \(\varepsilon \rightarrow 0\) and thus reducing the mathematical quality of solutions necessary for the equations to be an adequate model of the underlying physics? In fact, both regularisations shown above are motivated by physics. Slemrod [10] refers to the higher-order theory of heat conduction due to Maxwell [16], which is also mentioned in Truesdell and Noll [17]. It is based upon a moment expansion of the Boltzmann equation, which leads to an infinite hierarchy of coupled moment equations for the mass density, the momentum density, the energy density, the energy flux etc., and has to be truncated by appropriate closure approximations. The common approximation of the heat flux by Fourier’s law in the mean energy balance equation gives the standard heat conduction equation. However, already in [16] it was shown for rarified gases that higher-order terms can arise due to density gradient contributions to the energy balance, and in [10] it was pointed out that a double Laplacian similar to Eq. (4) also occurs in the Cahn–Hilliard equation which describes the process of phase separation in a two-component binary fluid. Moment expansions of the Boltzmann equation, resulting in hydrodynamic balance equations for charge carrier densities and electron temperature, have also widely been used in nonlinear electron transport in semiconductors [18,19,20], giving higher-order terms at various levels of approximation.
Thanh et al. [11] describe the regularisation term as some kind of viscous effects referring, amongst others, to Binder et al. [21] and Novick-Cohen and Pego [22].
Indeed, there is a whole mathematical theory called vanishing viscosity method based upon the regularisation with a diffusive term multiplied with the regularisation parameter \(\varepsilon \). At the end, letting the parameter \(\varepsilon \) tend to zero yields a solution to the original problem. The method goes back to von Neumann and Richtmyer [23] who introduced it as a method to calculate hydrodynamic shocks numerically.
One of the simplest examples for which the vanishing viscosity method can successfully be applied is the famous Burgers’ equation
$$\begin{aligned} \partial _t u + u \;\partial _x u =0, \end{aligned}$$
(6)
which can be seen as a simple model for a one-dimensional flow. To apply the vanishing viscosity method, the diffusion term \(\varepsilon \; \partial _{xx}u\) is added,
$$\begin{aligned} \partial _t u + u \;\partial _x u -\varepsilon \; \partial _{xx}u=0, \end{aligned}$$
(7)
where \(\varepsilon \) is the regularisation parameter mentioned above. Intuitively, the discontinuities that may appear in the case of the inviscid Burgers’ equation (6) are first smoothed out by the additional diffusion term and then, this smoothing effect is reduced more and more (cf. Fig. 1), such that at the end, a solution to the original Eq. (6) is obtained. A detailed discussion of the application of the vanishing viscosity method in the case of the Burgers’ equation can, e.g., be found in the lecture notes of Kruzhkov on first-order quasilinear partial differential equations [24].
Another example where the vanishing viscosity method can successfully be applied is a system of Boussinesq equations, shown in the monograph of Guo et al. [25]. It reads
$$\begin{aligned} \begin{aligned}&\partial _t \rho + \alpha \; \partial _x u + \beta \; \partial _x (u\rho ) =0, \\&\partial _t u + \gamma \;\partial _x \rho + \delta \; u\; \partial _x u - \nu \; \partial _{xxt} u =0, \end{aligned} \end{aligned}$$
(8)
and describes the propagation of the long surface wave in a pipe with constant depth. Here, \(\rho \) is the density, u is the velocity, \(\omega =1+\delta \rho \) denotes the altitude from the bottom to the free surface of the flow and \(\alpha ,\beta ,\gamma ,\delta , \nu \) are constants. In this case, the regularisation term \(\varepsilon \; \partial _{xx} \rho \) is added to the first equation and at the end, \(\varepsilon \) tends to zero. Here, the regularised problem admits a unique classical smooth solution, whereas the original problem only admits weak solutions.
A broad overview of other examples for the vanishing viscosity method can also be found in Guo et al. [25].
Example 2: kinetic models for dilute polymers
In other examples, like the following one, the regularisation term is already existent in the derivation of the physical model but is then omitted because it seems to be of negligibly small order of magnitude. Barrett and Süli [26] consider a kinetic bead-spring model for dilute polymers, where the extra-stress tensor is defined through the associated probability density function \(\psi \). This function satisfies the Fokker–Planck-type parabolic equation
$$\begin{aligned}&\partial _t \psi + \left( u\cdot \nabla _x\right) \psi + \nabla _q\cdot \left( \left( \nabla _x\; \mathscr {J}^x_{l_0,q}\; u \right) q\; \psi \right) \nonumber \\&\quad = \varepsilon \; \varDelta _x \psi + \frac{1}{2\lambda }\nabla _q \cdot \left( \nabla _q\; \psi + U'\;q\; \psi \right) . \end{aligned}$$
(9)
Here, u is the velocity of the fluid considered, q is the elongation vector of the dumbbell representing a polymer chain, \(\mathscr {J}^x_{l_0,q}\) is the directional Friedrichs mollifier with respect to x over an interval of length \(l_0\vert q\vert \) in the direction q, and U is the potential of the elastic force of the spring connecting two beads. The constant \(\varepsilon \) corresponds to the quantity \(\frac{\text {De}}{\text {Pe}}\), where \(\text {De}\) denotes the Deborah number and \(\text {Pe}\) the Péclet number, and the constant \(\lambda \) corresponds to the relaxation time constant of the dumbbells.
One interesting feature of this model is the presence of the diffusion term \(\varepsilon \;\varDelta _x\;\psi \) on the right-hand side of Eq. (9). As Barrett and Süli [26] already mention, this term is usually omitted in standard derivations of bead-spring models, because it is several orders of magnitude smaller than the other terms in Eq. (9). Actually, Bhave et al. [27] estimate the quantity \(\frac{De}{Pe}\) to be in the range of \(10^{-9}\)–\(10^{-7}\), whereas the expected important length scales of stress diffusion start at \(10^{-5}\)–\(10^{-3}\).
Mathematically however, omitting the diffusion term is quite detrimental as it leads to a hyperbolically degenerate parabolic equation which is much harder to handle than Eq. (9).Footnote 3 In fact, the existence result in the case \(\varepsilon =0\) is again proven via showing the existence of solutions for \(\varepsilon >0\) and then passing to the limit as \(\varepsilon \rightarrow 0\). This leads to less regularity for the probability density function \(\psi \). So again we state that the original model with the higher-order term delivers mathematically “better” solutions than the model without this higher-order term. In this case, the model with the higher-order term even seems to be more adequate physically.
Example 3: regularisation by noise
A quite recent approach to regularise an equation is to add a certain stochastic noise in order to obtain the existence of a unique solution where, without noise, only existence or uniqueness or none of these two is known so far.
There is some work by, e.g., Gyöngy and Pardoux [30, 31] using additive noise to prove existence of a unique solution under assumptions which, in the deterministic case, are so far not known to suffice for obtaining existence or uniqueness. Gyöngy and Pardoux [30, 31] consider the equation
$$\begin{aligned} \partial _t u(x,t) - \partial _{xx} u(x,t) =f(x,t,u(x,t)) + \partial _{tx} W(x,t) \end{aligned}$$
(10)
equipped with either homogeneous Dirichlet or homogeneous Neumann boundary conditions, where f is a nonlinear function and \(\partial _{tx} W\) denotes space-time white noise. Under the assumption that f satisfies some measurability and boundedness condition, Gyöngy and Pardoux [30, 31] are able to prove existence and uniqueness of a solution in a generalized sense defined in the work of Walsh [32], which may be compared to a very weak solution (cf. Sect. 2) but in a stochastic sense. In the deterministic case, the assumptions on f are, to the best knowledge of the authors, not enough to prove existence or uniqueness of solutions.
More recently, there has been research on linear multiplicative noise by, e.g., Flandoli et al. [33], considering the linear transport equation
$$\begin{aligned} \partial _t u + b\cdot \nabla u = 0 \end{aligned}$$
(11)
driven by the vector field b. Assuming that b is sufficiently regular, uniqueness of solutions to the initial-boundary value problem governed by this equation can be proven (cf., e.g., DiPerna and Lions [34] or Ambrosio [35]), but if this is not the case then examples of non-uniqueness are known, as is shown in the work of Flandoli et al. [33]. However, if a certain amount of linear multiplicative noise is added to Eq. (11), existence and uniqueness of solutions can be proven under weaker assumptions on b, see again [33]. To be precise, the stochastic equation
is considered, where \(e_i\), \(i=1,\ldots ,d\), are the unit vectors in \(\mathbb {R}^d\),
is a standard Brownian motion in \(\mathbb {R}^d\), and the notation \(\circ \) is used for the stochastic integration in the sense of Stratonovich.
Since real-world systems often include noise, the consideration of stochastic differential equations is physically also very important, and there are many works considering the influence of noise on various physical systems. We just want to mention some examples here. Additive noise has been shown to have an important effect, e.g., upon chimera states (coexisting coherent and incoherent space-time patterns in networks), which can be either destructive, see, e.g., Loos et al. [36, 37], or constructive, see, e.g., Zakharova et al. [38, 39]. Multiplicative noise has been considered, for example, in the work on nonequilibrium phase transitions by Van den Broeck et al. [40].