Skip to main content
Log in

Controlling chaos in a discrete-time prey-predator model with Allee effects

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a discrete-time prey-predator model with Allee effect is proposed. The parametric conditions for local asymptotic stability of steady-states are investigated. Moreover, we discuss the existence and directions of period-doubling and Neimark-Sacker bifurcations with the of help center manifold theorem and bifurcation theory. In order to control chaos due to emergence of Neimar-Sacker bifurcation, we apply OGY feedback control method and the hybrid control methodology is also implemented. Numerical simulations are provided to illustrate theoretical discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  2. Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem Acad Lincei 2:31–113

    MATH  Google Scholar 

  3. Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  4. Jang SR-J (2006) Allee effects in a discrete-time host-parasitoid model. J Differ Equ Appl 12(2):165–181

    Article  MathSciNet  MATH  Google Scholar 

  5. Allee WC (1938) The Social Life of Animals. William Heinemann, London

    Book  Google Scholar 

  6. Begon M, Harper J, Townsend C (1996) Ecology: Individuals, Populations and Communities. Blackwell Science Ltd, New York

    Book  Google Scholar 

  7. Dennis B (1989) Allee effects, population growth, critical density, and the chance of extinction. Nat Resour Model 3:481–538

    Article  MathSciNet  MATH  Google Scholar 

  8. Çelik C, Duman O (2009) Allee effect in a discrete-time predator-prey system. Chaos Soliton Fract 40:1956–1962

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu X, Xiao D (2007) Complex dynamic behaviors of a discrete-time predator-prey system. Chaos Soliton Fract 32:80–94

    Article  MathSciNet  MATH  Google Scholar 

  10. He Z, Lai X (2011) Bifurcation and chaotic behavior of a discrete-time predator-prey system. Nonlinear Anal RWA 12:403–417

    Article  MathSciNet  MATH  Google Scholar 

  11. Jing Z, Yang J (2006) Bifurcation and chaos in discrete-time predator-prey system. Chaos Soliton Fract 27:259–277

    Article  MathSciNet  MATH  Google Scholar 

  12. Agiza HN, ELabbasy EM, EL-Metwally H, Elsadany AA (2009) Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Anal RWA 10:116–129

    Article  MathSciNet  MATH  Google Scholar 

  13. Li B, He Z (2014) Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model. Nonlinear Dyn 76(1):697–715

  14. Yuan L-G, Yang Q-G (2015) Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Appl Math Model 39(8):2345–2362

    Article  MathSciNet  Google Scholar 

  15. Din Q (2016) Global stability of Beddington model. Qual Theor Dyn Syst pp 1–25. doi:10.1007/s12346-016-0197-9

  16. Din Q (2017) Global stability and Neimark-Sacker bifurcation of a host-parasitoid model. Int J Syst Sci 48(6):1194–1202

    Article  MathSciNet  MATH  Google Scholar 

  17. Din Q (2017) Neimark-Sacker bifurcation and chaos control in Hassell-Varley model. J Differ Equ Appl pp 1–22. doi:10.1080/10236198.2016.1277213

  18. Din Q, Gümüş ÖA, Khalil H (2017) Neimark-Sacker bifurcation and chaotic behaviour of a modified host-parasitoid model. Z Naturforsch A 72(1):25–37

    Article  Google Scholar 

  19. Din Q (2017) Complexity and chaos control in a discrete-time prey-predator model. Commun Nonlinear Sci Numer Simul 49:113–134

    Article  MathSciNet  Google Scholar 

  20. Din Q (2017) Qualitative analysis and chaos control in a density-dependent host-parasitoid system. Int J Dyn Control. doi:10.1007/s40435-017-0341-7

  21. Din Q, Saeed U (2017) Bifurcation analysis and chaos control in a host-parasitoid model. Math Method Appl Sci. doi:10.1002/mma.4395

  22. Din Q, Elsadany AA, Khalil H (2017) Neimark-Sacker bifurcation and chaos control in a fractional-order plant-herbivore model. Discret Dyn Nat Soc, Article ID 6312964, pp 1–15

  23. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York

    Book  MATH  Google Scholar 

  24. Robinson C (1999) Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press, Boca Raton

    MATH  Google Scholar 

  25. Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York

    MATH  Google Scholar 

  26. Wan YH (1978) Computation of the stability condition for the Hopf bifurcation of diffeomorphism on \(R^2\). SIAM J Appl Math 34:167–175

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuznetsov YA (1997) Elements of Applied Bifurcation Theory. Springer, New York

    Google Scholar 

  28. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  29. Lynch S (2007) Dynamical Systems with Applications Using Mathematica. Birkh\(\ddot{a}\)user, Boston

  30. Luo XS, Chen GR, Wang BH et al (2004) Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Solitons Fract 18:775–783

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Q. Controlling chaos in a discrete-time prey-predator model with Allee effects. Int. J. Dynam. Control 6, 858–872 (2018). https://doi.org/10.1007/s40435-017-0347-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0347-1

Keywords

Navigation