Combination synchronization of Genesio time delay chaotic system via robust adaptive sliding mode control

Article

Abstract

This manuscript investigates the combination synchronization of identical Genesio time-delay chaotic system via robust adaptive sliding mode control. For this purpose the corresponding methodology is also developed. The stability of error dynamics is established by using Lyapunov stability theory and detailed mathematical theory. Finally, numerical simulations are displayed to show the viability of the methodology. Computational and analytical results are in excellent agreement.

Keywords

Time delay Genesio chaotic system Combination synchronization Robust adaptive sliding mode control Lyapunov stability theory 

References

  1. 1.
    Kolmanovskii V, Myshkis A (2012) Applied theory of functional differential equations, vol 85. Springer, BerlinMATHGoogle Scholar
  2. 2.
    Farmer JD (1982) Chaotic attractors of an infinite-dimensional dynamical system. Phys D Nonlinear Phenom 4(3):366–393MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ikeda K, Matsumoto K (1986) Study of a high-dimensional chaotic attractor. J Stat Phys 44(5–6):955–983MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Le Berre M, Ressayre E, Tallet A, Gibbs HM (1986) High-dimension chaotic attractors of a nonlinear ring cavity. Phys Rev Lett 56(4):274MathSciNetCrossRefGoogle Scholar
  5. 5.
    Le Berre M, Ressayre E, Tallet A, Gibbs HM, Kaplan DL, Rose MH (1987) Conjecture on the dimensions of chaotic attractors of delayed-feedback dynamical systems. Phys Rev A 35(9):4020MathSciNetCrossRefGoogle Scholar
  6. 6.
    Park JH, Kwon OM (2006) Guaranteed cost control of time-delay chaotic systems. Chaos Solitons Fractals 27(4):1011–1018MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen B, Liu X, Tong S (2007) Guaranteed cost control of time-delay chaotic systems via memoryless state feedback. Chaos Solitons Fractals 34(5):1683–1688MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sun J (2004) Global synchronization criteria with channel time-delay for chaotic time-delay system. Chaos Solitons Fractals 21(4):967–975MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ghosh D, Chowdhury AR, Saha P (2008) Multiple delay Rössler system—bifurcation and chaos control. Chaos Solitons Fractals 35(3):472–485MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hua C, Guan X (2003) Robust control of time-delay chaotic systems. Phys Lett A 314(1):72–80MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bünner MJ, Just W (1998) Synchronization of time-delay systems. Phys Rev E 58(4):R4072CrossRefGoogle Scholar
  12. 12.
    He R, Vaidya PG (1999) Time delayed chaotic systems and their synchronization. Phys Rev E 59(4):4048CrossRefGoogle Scholar
  13. 13.
    Pérez G, Cerdeira HA (1995) Extracting messages masked by chaos. Phys Rev Lett 74(11):1970CrossRefGoogle Scholar
  14. 14.
    Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer GmbH, Berlin, pp 19–38Google Scholar
  15. 15.
    Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer GmbH, Berlin, pp 3–17Google Scholar
  16. 16.
    Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronization via active control. Int J Model Identif Control (IJMIC) 23(3):267–277CrossRefGoogle Scholar
  17. 17.
    Vaidyanathan S, Azar AT (2016) Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In: Advances in chaos theory and intelligent control. Studies in fuzziness and soft computing, vol 337, Springer, BerlinGoogle Scholar
  18. 18.
    Azar AT, Vaidyanathan S, Ouannas A (2017) Fractional order control and synchronization of chaotic systems. Studies in computational intelligence, vol 688, Springer, Berlin. ISBN 978-3-319-50248-9Google Scholar
  19. 19.
    Ouannas A, Azar AT, Radwan AG (2016) On inverse problem of generalized synchronization between different dimensional integer-order and fractional-order chaotic systems. In: Microelectronics (ICM), 2016 28th international conference on. IEEE, pp 193–196Google Scholar
  20. 20.
    Azar AT, Serrano FE (2015) Deadbeat control for multivariable discrete time systems with time varying delays. In: Chaos modeling and control systems design. Springer, Berlin, pp 97–132Google Scholar
  21. 21.
    Azar AT, Serrano FE (2016) Robust control for asynchronous switched nonlinear systems with time varying delays. In: International conference on advanced intelligent systems and informatics. Springer, Berlin, pp 891–899Google Scholar
  22. 22.
    Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Li S, Hui-Zhong Y (2010) H\(\infty \) synchronization of chaotic systems via delayed feedback control. Int J Autom Comput 7(2):230–235CrossRefGoogle Scholar
  25. 25.
    Khan A, Tyagi A (2016) Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int J Dyn Control. doi: 10.1007/s40435-016-0265-7 Google Scholar
  26. 26.
    Khan A, Bhat MA (2016) Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system. Int J Dyn Control. doi: 10.1007/s40435-016-0274-6 Google Scholar
  27. 27.
    Khan A, Shikha S (2016) Mixed tracking and projective synchronization of 6D hyperchaotic system using active control. Int J Nonlinear Sci 22(1):44–53. doi: 10.1007/s40435-016-0258-6 MathSciNetGoogle Scholar
  28. 28.
    Yang CC (2012) Robust synchronization and anti-synchronization of identical \(\phi \)6 oscillators via adaptive sliding mode control. J Sound Vib 331(3):501–509MathSciNetCrossRefGoogle Scholar
  29. 29.
    Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s Jerk systems. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer GmbH, Berlin, pp 39–58Google Scholar
  30. 30.
    Mekki H, Boukhetala D, Azar AT (2015) Sliding modes for fault tolerant control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer GmbH, Berlin, pp 407–433Google Scholar
  31. 31.
    Vaidyanathan S, Azar AT (2015) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan-Madhavan chaotic systems. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer GmbH, Berlin, pp 527–547Google Scholar
  32. 32.
    Vaidyanathan S, Azar AT (2015) Hybrid synchronization of identical chaotic Systems using sliding mode control and an application to Vaidyanathan chaotic systems. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence book series, vol 576. Springer GmbH, Berlin, pp 549–569Google Scholar
  33. 33.
    Khan A, Shikha S (2016) Hybrid function projective synchronization of chaotic systems via adaptive control. Int J Dyn Control 1–8. doi: 10.1007/s40435-016-0258-6
  34. 34.
    Khan A, Shahzad M (2013) Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller. Complexity 18(6):58–64MathSciNetCrossRefGoogle Scholar
  35. 35.
    Hong-Yan Z, Le-Quan M, Geng Z, Guan-Rong C (2013) Generalized chaos synchronization of bidirectional arrays of discrete systems. Chin Phys Lett 30(4):040502CrossRefGoogle Scholar
  36. 36.
    Chen J, Jiao L, Wu J, Wang X (2010) Projective synchronization with different scale factors in a driven-response complex network and its application in image encryption. Nonlinear Anal Real World Appl 11(4):3045–3058CrossRefMATHGoogle Scholar
  37. 37.
    Li GH (2007) Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32(5):1786–1790MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Vaidyanathan S, Azar AT (2016) Adaptive control and synchronization of halvorsen circulant chaotic systems. In: Advances in chaos theory and intelligent control. Springer, Berlin, pp 225–247Google Scholar
  39. 39.
    Yu F, Wang C, Wan Q, Hu Y (2013) Complete switched modified function projective synchronization of a five-term chaotic system with uncertain parameters and disturbances. Pramana 80(2):223–235CrossRefGoogle Scholar
  40. 40.
    Khan A, Bhat MA (2016) Hybrid projective synchronization of fractional order chaotic systems with fractional order in the interval (1,2). Nonlinear Dyn Syst Theory 16(4):350–365MATHGoogle Scholar
  41. 41.
    Runzi L, Yinglan W, Shucheng D (2011) Combination synchronization of three classic chaotic systems using active backstepping design. Chaos Interdiscip J Nonlinear Sci 21(4):043114CrossRefMATHGoogle Scholar
  42. 42.
    Ojo KS, Njah AN, Olusola OI, Omeike MO (2014) Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dyn 77(3):583–595MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations