Skip to main content
Log in

Observer design for a nonlinear diffusion system based on the Kirchhoff transformation

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper deals with the state estimation for a nonlinear diffusion system. An observer that reconstructs the whole state, from the available measurements, is proposed based on an equivalent linear diffusion model obtained using the Kirchhoff tangent transformation. This bijective mapping allows to apply the available and powerful state estimation theory of linear distributed parameter systems and simplifies the observer design. Hence, an observer can be designed for the obtained equivalent linear diffusion system and by using the Kirchhoff transformation, the whole state of the original nonlinear diffusion system is recovered. The observability analysis of the nonlinear diffusion system and the convergence of the proposed observer are also investigated based on the equivalent linear diffusion system. The effectiveness of the proposed observer is shown, through numerical simulation runs, in the case of a heated steel rod by considering both an uniformly distributed and a punctual boundary sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Christofides PD (2001) Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  2. Eleiwi F, Laleg-Kirati TM (2016) Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant. J Process Control 47:78–86

    Article  Google Scholar 

  3. Ray WH (1989) Advanced process control. Butterworths, Boston

    Google Scholar 

  4. Vande Wouwer A, Zeitz M (2003) State estimation in distributed parameter systems. In: Encyclopedia of life support systems (EOLSS): control systems, robotics and automation. EOLSS, Paris, France

  5. Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, New York

    Book  MATH  Google Scholar 

  6. Curtain R (1975) A survey of infinite-dimensional filtering. SIAM Rev 17(3):395–411

    Article  MathSciNet  MATH  Google Scholar 

  7. Hidayat Z, Babusška R, De Schutter B, Núñez A (2011) Observers for linear distributed parameter systems: a survey. In: The proceedings of the 2011 IEEE international symposium on robotics and sensors environments (ROSE 2011), Montreal, Canada, pp 166–171, September 17–18

  8. Meditch JS (1970) On state estimation for distributed parameter systems. J Frankl Inst 290(1):49–59

    Article  MathSciNet  MATH  Google Scholar 

  9. Nguyen VT, Georges D, Besançon G (2016) State and parameter estimation in 1-D hyperbolic PDEs based on an adjoint method. Automatica 67:185–191

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang J-W, Guo Y (2016) Distributed-parameter Luenberger observer for semi-linear parabolic PDE systems with a mobile pointwise sensor. In: The proceedings of the 35th Chinese control conference, Chengdu, China, pp 1136–1141, July 27–29

  11. Li H-X, Qi C (2010) Modeling of distributed parameter systems for applications—a synthesized review from time–space separation. J Process Control 20(8):891–901

    Article  Google Scholar 

  12. Singh A, Hahn J (2007) Effect of finite-dimensional approximation on observability analysis of distributed parameter models. In: The proceedings of the 8th IFAC symposium on dynamics and control of processes systems, Cancun, Mexico, pp 199–204, June 6–8

  13. Maidi A, Corriou JP (2011) Boundary control of nonlinear distributed parameter systems by input–output linearization. In: The proceedings of the 18th IFAC world congress, Milan, Italy, pp 10910–10915, August 28–September 02

  14. Engel K-J, Nagel R (2006) A short course on operator semigroups. Springer, New York

    MATH  Google Scholar 

  15. Afshar S, Morris K, Khajepour A (2015) Comparison of different observer designs for heat equation. In: The proceedings of the 54th IEEE annual conference on the decision and control (CDC), Osaka, Japan, pp 1136–1141, December 15–18

  16. Bitzer M, Zeitz M (2002) Design of a nonlinear distributed parameter observer for a pressure swing adsorption plant. J Process Control 12(4):533–543

    Article  Google Scholar 

  17. Hua X, Mangold M, Kienle A, Gilles E-D (1997) State profile estimation of an autothermal periodic fixed-bed reactor. Chem Eng Sci 53(1):47–58

    Article  Google Scholar 

  18. Mangold M, Lauschke G, Schaffner J, Zeitz M, Gilles E-D (1994) State and parameter estimation for adsorption columns by nonlinear distributed parameter state observers. J Process Control 4(3):163–172

    Article  Google Scholar 

  19. Marquardt W, Auracher H (1990) An observer-based solution of inverse heat conduction problems. Int J Heat Mass Transf 33(7):1545–1562

    Article  Google Scholar 

  20. Varies D, Kessman KJ, Zwart H (2007) A Luenberger observer for an infinite dimensional bilinear system: a UV disinfection example. In: The proceedings of the 3rd IFAC symposium on systems structures and control, Foz do Iguassu, Brazil

  21. Farlow SJ (1993) Partial differential equations for scientists and engineers. Dover Publications, New York

    MATH  Google Scholar 

  22. Wu Z, Zhao J, Yin J, Li H (2001) Nonlinear diffusion equations. World Scientific Publishing, London

    Book  MATH  Google Scholar 

  23. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  24. Meleshko SV (2005) Methods for constructing exact solutions of partial differential equations. Mathematical and analytical techniques with applications in engineering. Springer, New York

    MATH  Google Scholar 

  25. Vadasz P (2010) Analytical solution to nonlinear thermal diffusion: Kirchhoff versus Cole–Hopf transformations. J Heat Transf 132(12):121 302.1–121 302.6

    Article  Google Scholar 

  26. El Jai A, Amouroux M (1988) Sensors and observers in distributed parameter systems. Int J Control 47(1):333–347

  27. Vande Wouwer A, Zeitz M, Point N, Remy M (1993) On-line implementation of a nonlinear distributed observer for a multizone furnace: comparative study with a nonlinear filter. Control Eng Pract 1(6):947–955

    Article  Google Scholar 

  28. Waldraff W, Douchain D, Bourrel S, Magnus A (1998) On the use of observability measures for sensor location in tubular reactor. J Process Control 8(5–6):497–505

  29. Kim S (2001) A simple direct estimation of temperature-dependent thermal conductivity with Kirchhoff transformation. Int Commun Heat Mass Transf 28(4):537–544

    Article  Google Scholar 

  30. Mierzwiczak M, Chen W, Fu Z-J (2015) The singular bounadry method for steady-state nonlinear heat conduction problem with temperature-dependent thermal conductivity. Int J Heat Mass Transf 91:205–217

    Article  Google Scholar 

  31. Emirsjlow Z, Townley S (2000) From PDEs with boundary control to the abstract state equation with an unbounded input operator: a tutorial. Eur J Control 6(1):27–49

    Article  MathSciNet  MATH  Google Scholar 

  32. Taler J, Duda P (2006) Solving direct and inverse heat conduction problems. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Vande Wouwer A, Saucez P, Schiesser WE (2001) Adaptive method of lines. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  34. Meditch JS (1971) Least-squares filtering and smoothing for linear distributed parameter systems. Automatica 7(3):315–322

    Article  MathSciNet  MATH  Google Scholar 

  35. Smyshlyaev A, Krstic M (2005) Backstepping observers for a class of parabolic PDEs. Syst Control Lett 54(7):613–625

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Maidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benameur, D., Maidi, A., Djennoune, S. et al. Observer design for a nonlinear diffusion system based on the Kirchhoff transformation. Int. J. Dynam. Control 6, 154–166 (2018). https://doi.org/10.1007/s40435-017-0313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0313-y

Keywords

Navigation