Skip to main content
Log in

Design and control of a multi-wing dissipative chaotic system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Considering the dissipative condition, a multi-wing chaotic attractor with a unique perspective is designed, using geometry root locus. By using a nonlinear dissipative term, a new structure is proposed to obtain a dissipative chaotic system with a four-wing attractor. The system properties, namely the phase portraits, bifurcation diagrams, Lyapunov exponents spectrum, Poincare maps and local stability, are investigated by numerical simulations. The phenomenon of multiple attractors is discussed and two double-wing smooth chaotic attractors using two different initial conditions are generated. The nonlinear time-delayed inputs are proposed for chaos control of the new system via bifurcation theory. Based on center manifold and normal form theories, the procedure of determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  2. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Article  Google Scholar 

  3. Chua LE, Komuro M, Matsumoto T (1986) The double scroll family. IEEE Trans Circuits Syst 33:1072–1118

    Article  MATH  Google Scholar 

  4. Chua LO, Wu CW, Huang A, Zhong GQ (1993) A universal circuit for studying and generating chaos. I. Routes to chaos. IEEE Trans Circuits Syst I: Fundam Theory Appl 40:732–744

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang X, Chen G (2012) A chaotic system with only one stable equilibrium. Commun Nonlinear Sci Numer Simul 17:1264–1272

    Article  MathSciNet  Google Scholar 

  6. Wei Z, Yang Q (2012) Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn 68:543–554

    Article  MathSciNet  MATH  Google Scholar 

  7. Wei Z (2012) Delayed feedback on the 3-D chaotic system only with two stable node-foci. Comput Math Appl 63:728–738

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang X, Chen G (2013) Constructing a chaotic system with any number of equilibria. Nonlinear Dyn 71:429–436

    Article  MathSciNet  Google Scholar 

  9. Li C, Sprott JC (2014) Chaotic flows with a single nonquadratic term. Phys Lett A 378:178–183

    Article  MathSciNet  Google Scholar 

  10. Wang Z, Cang S, Ochola EO, Sun Y (2012) A hyperchaotic system without equilibrium. Nonlinear Dyn 69:531–537

    Article  MathSciNet  Google Scholar 

  11. Esen O, Choudhury AG, Guha P (2016) Bi-Hamiltonian structures of 3D chaotic dynamical systems. Int J Bifurc Chaos 26:1650215

    Article  MathSciNet  MATH  Google Scholar 

  12. Lai Q, Chen S (2016) Coexisting attractors generated from a new 4D smooth chaotic system. Int. J. Control Autom Syst 14:1124–1131

    Article  Google Scholar 

  13. Lai Q, Chen S (2016) Research on a new 3D autonomous chaotic system with coexisting attractors. Optik 127:3000–3004

    Article  Google Scholar 

  14. Kais B (2015) Gallery of chaotic attractors generated by fractal network. Int J Bifurc Chaos 25:1530002

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9:1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  16. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12:659–661

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi G, Chen G, Du S, Chen Z, Yuan Z (2005) Analysis of a new chaotic system. Phys A Stat Mech Appl 352:295–308

    Article  Google Scholar 

  18. Qi G, Chen G, Li S, Zhang Y (2006) Four-wing attractors: from pseudo to real. Int J Bifurc Chaos 16:859–885

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen Z, Yang Y, Yuan Z (2008) A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38:1187–1196

    Article  MathSciNet  MATH  Google Scholar 

  20. Grassi G (2008) Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems. Chin Phys B 17:3247

    Article  Google Scholar 

  21. Dadras S, Momeni HR (2009) A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys Lett A 373:3637–3642

    Article  MathSciNet  MATH  Google Scholar 

  22. Lai Q, Guan ZH, Wu Y, Liu F, Zhang DX (2013) Generation of multi-wing chaotic attractors from a Lorenz-like system. Int J Bifurc Chaos 23:1350152

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou L, Chen Z, Wang Z, Wang J (2016) On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system. Chaos Solitons Fractals 91:148–156

    Article  MathSciNet  MATH  Google Scholar 

  24. Zarei A (2015) Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn 81:585–605

    Article  MathSciNet  Google Scholar 

  25. Zhou T, Chen G, Yang Q (2004) Constructing a new chaotic system based on the Silnikov criterion. Chaos Solitons Fractals 19:985–993

    Article  MathSciNet  MATH  Google Scholar 

  26. Wei Z, Sprott JC, Chen H (2015) Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Phys Lett A 379:2184–2187

    Article  MathSciNet  MATH  Google Scholar 

  27. Tian X, Xu R (2016) Stability and Hopf bifurcation of a delayed CohenGrossberg neural network with diffusion. Math Meth Appl Sci 40:293–305

  28. Dong E, Liang Z, Du S, Chen Z (2016) Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement. Nonlinear Dyn 83:623–630

    Article  MathSciNet  Google Scholar 

  29. Qi G, Wang Z, Guo Y (2012) Generation of an eight-wing chaotic attractor from Qi 3-D four-wing chaotic system. Int J Bifurc Chaos 22:1250287

    Article  MathSciNet  MATH  Google Scholar 

  30. Guan ZH, Lai Q, Chi M, Cheng XM, Liu F (2014) Analysis of a new three-dimensional system with multiple chaotic attractors. Nonlinear Dyn 75:331–343

    Article  MathSciNet  MATH  Google Scholar 

  31. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196

    Article  MathSciNet  MATH  Google Scholar 

  32. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428

    Article  Google Scholar 

  33. Pyragas K (1995) Control of chaos via extended delay feedback. Phys Lett A 206:323–330

    Article  MathSciNet  MATH  Google Scholar 

  34. Zarei A, Tavakoli S (2016) Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system. Appl Math Comput 291:323–339

    MathSciNet  Google Scholar 

  35. Tian X, Xu R, Gan Q (2015) Hopf bifurcation analysis of a BAM neural network with multiple time delays and diffusion. Appl Math Comput 266:909–926

    MathSciNet  Google Scholar 

  36. Xiao M, Jiang G, Zhao L, Xu W, Wan Y, Fan C, Wang Z (2015) Stability switches and Hopf bifurcations of an isolated population model with delay-dependent parameters. Appl Math Comput 264:99–115

    MathSciNet  Google Scholar 

  37. Zang H, Zhang T, Zhang Y (2015) Bifurcation analysis of a mathematical model for genetic regulatory network with time delays. Appl Math Comput 260:204–226

    MathSciNet  Google Scholar 

  38. Hassard BD, Kazarinoff ND, Wan YH (1981) Theory and applications of Hopf bifurcation. CUP Arch 129–138

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, A., Tavakoli, S. Design and control of a multi-wing dissipative chaotic system. Int. J. Dynam. Control 6, 140–153 (2018). https://doi.org/10.1007/s40435-017-0309-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0309-7

Keywords

Navigation