Design of FOPID controller for fractional-order plants with experimental verification

  • M. R. Bongulwar
  • B. M. PatreEmail author


In this paper, a design method is proposed for a robust stabilizing fractional order proportional integral derivative (FOPID) controller for One Non-Integer Order Plus Time Delay plant (NIOPTD-I). The NIOPTD-I model is obtained after reducing the higher order continuous time process model. The FOPID controller is designed by using stability boundary locus method, which satisfies user defined frequency domain specifications phase margin and the gain crossover frequency. A robust control system is designed against gain variations by achieving flat phase condition which is due to zero slope at the gain crossover frequency of the phase plot. Thus robust stabilizing FOPID controller for NIOPTD-I fractional order plant is designed. The applicability of the proposed method is illustrated with simulation example and experimental validation with the liquid level control system.


One Non-Integer Order Plus Time Delay plant (NIOPTD-I) Stability boundary locus Flat phase condition Iso-damped response Fractional order proportional integral derivative (FOPID) 


  1. 1.
    Tepljakov A (2011) Fractional-order calculus based identification and control of linear dynamic systems. Department of Computer Control, Tallinn University of Technology, TallinnzbMATHGoogle Scholar
  2. 2.
    Malek H, Luo Y, Chen Y (2011) Tuning fractional order proportional integral controllers for time delayed systems with a fractional pole. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p 311–321. American Society of Mechanical EngineersGoogle Scholar
  3. 3.
    Valério D, Sá da Costa J (2005) Levys identification method extended to commensurate fractional order transfer functions. In: Fifth EUROMECH Nonlinear Dynamics Conference, p 1357–1366Google Scholar
  4. 4.
    Ma C, Hori Y (2004) An introduction of fractional order control and its applications in motion control. In: Proceedings of 23rd Chinese Control Conference, p 10–13. Wuxi, ChinaGoogle Scholar
  5. 5.
    Tan N (2005) Computation of stabilizing PI and PID controllers for processes with time delay. ISA Trans 44:213–223CrossRefGoogle Scholar
  6. 6.
    Monje CA, Vinagre BM, Chen Y, Feliu V, Lanusse P, Sabatier J (2009) Optimal tunings for fractional PI\(^\lambda \) D\(^\mu \) controllers. Fract Differ Appl 675–686Google Scholar
  7. 7.
    Podlubny I (1999) Fractional differential equations. Academic Press, San DiegozbMATHGoogle Scholar
  8. 8.
    Podlubny I (1999) Fractional-order systems and \({P} {I}^\lambda {D}^\mu \)-controllers. IEEE Trans Autom Control 44(1):208–214MathSciNetCrossRefGoogle Scholar
  9. 9.
    Petras I (1999) The fractional-order controllers: methods for their synthesis and application. J Electr Eng 50(9/10):284–288Google Scholar
  10. 10.
    Vinagre BM, Podlubny I, Dorcak L, Feliu V (2000) On fractional PID controllers: a frequency domain approach. In: Proceedings of IFAC Workshop on Digital Control, Past, Present and Future of PID Control. Terrasa, SpainGoogle Scholar
  11. 11.
    Das S, Saha S, Das S, Gupta A (2011) On the selection of tuning methodology of FOPID controllers for the control of higher order processes. ISA Trans 50(3):376–388CrossRefGoogle Scholar
  12. 12.
    Monje CA, Calderon AJ, Vinagre BM (2004) On fractional \({P}{I}^\lambda \) controllers: some tuning rules for robustness to plant uncertainties. Nonlinear Dyn 38(1/4):369–381CrossRefzbMATHGoogle Scholar
  13. 13.
    Amoura K, Mansouri R, Bettayeb M, Al-Saggaf UM (2016) Closed-loop step response for tuning PID-fractional-order-filter controllers. ISA Trans. doi: 10.1016/j.isatra.2016.04.017)
  14. 14.
    Hamamci SE, Tan N (2006) Design of PI controllers for achieving time and frequency domain specifications simultaneously. ISA Trans 45(4):529–543CrossRefGoogle Scholar
  15. 15.
    Luo Y, Chen Y (2012) Stabilizing and robust fractional order PI controller synthesis for first order plus time delay systems. Automatica 48:2159–2167MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang DJ, Li W, Guo ML (2013) Tuning of \({P}{I}^\lambda {D}^\mu \) controllers based on sensitivity constraint. J Process Control 23(6):861–867CrossRefGoogle Scholar
  17. 17.
    Maiti D, Acharya A, Chakraborty M, Konar A, Janarthanan R (2008) Tuning PID and \(PI^\lambda D^\delta \) controllers using the integral time absolute error criterion. In: Information and Automation for Sustainability, 2008. ICIAFS 2008. 4th International Conference on, p 457–462. IEEEGoogle Scholar
  18. 18.
    Leu JF, Tsay SY, Hwang C et al (2002) Design of optimal fractional-order pid controllers. J Chin Inst Chem Eng 33(2):193–202Google Scholar
  19. 19.
    MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010)Google Scholar
  20. 20.
    Monje CA, Chen YQ, Vinagre BM, Xue D (2010) Fractional-order systems and controls. Springer, New YorkCrossRefzbMATHGoogle Scholar
  21. 21.
    Hamanci SE (2008) Stbilization using fractional-order PI and PID controllers. Nonlinear Dyn 51(1):329–343Google Scholar
  22. 22.
    Tan N, Kaya I, Yeroglu C, Atherton DP (2006) Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Convers Manag 47(18):3045–3058CrossRefGoogle Scholar
  23. 23.
    Vu TNL, Lee M (2013) Analytical design of fractional order proportional integral controllers for time delay processes. ISA Trans 52:583–591CrossRefGoogle Scholar
  24. 24.
    Yeroglu C, Tan N (2011) Classical controller design techniques for fractional order case. ISA Trans 50:461–472CrossRefGoogle Scholar
  25. 25.
    Hamamci SE (2007) An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans Autom Control 52(10):1964–1969MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Maione G, Lino P (2007) New tuning rules for fractional \(PI^\alpha \) controllers. Nonlinear Dyn 49(1–2):251–257CrossRefzbMATHGoogle Scholar
  27. 27.
    Shah P, Agashe S (2016) Review of fractional PID controller. Mechatronics 38:29–41CrossRefGoogle Scholar
  28. 28.
    Hwang C, Cheng YC (2006) A numerical algorithm for stability testing of fractional delay systems. Automatica 42(5):825–831MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bongulwar MR, Patre BM (2015) Stability regions of closed loop system with one non-integer plus time delay plant by fractional order PID controller. Int J Dyn Control doi: 10.1007/s40435-015-0191-0
  30. 30.
    Astrom KJ, Panagopoulos H, Hagglund T (1998) Design of PI controllers based on non-convex optimization. Automatica 34(5):585–601MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Chen YQ, Tripti B, Xue D (2008) Practical tuning rule development for fractional order proportional and integral controllers. J Comput Nonlinear Dyn 3(2):021403Google Scholar
  32. 32.
    Panagopoulos H, Astrom KJ (2002) Design of PID controllers based on constrained optimization. IEE Proc Control Theory Appl 149:32–40CrossRefGoogle Scholar
  33. 33.
    Shen JC (2002) New tuning method for PID controller. ISA Trans 41(4):473–484CrossRefGoogle Scholar
  34. 34.
    Bhase SS, Patre BM (2014) Robust FOPI controller design for power control of PHWR under step-back condition. Nucl Eng Des 274:20–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.S.G.G.S.I.E.&TNandedIndia

Personalised recommendations