Skip to main content
Log in

Periodic motions and limit cycles of linear cable galloping

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, analytical galloping dynamics of linear cables with the uniform airflow of the wind is discussed through a two-degree-of-freedom nonlinear oscillator. The nonlinearity in the two-degree-of-freedom oscillator is only from aero-dynamic forces caused by the uniform airflow. The analytical solutions of periodic motions for linear cable galloping are discussed from the analytical method with the finite Fourier series. The corresponding stability and bifurcation of the periodic motions of the linear cable galloping are determined through the two-degree-of-freedom nonlinear system. Frequency-amplitude analysis of periodic motions and limit cycles of linear cable galloping are presented. Numerical illustrations of trajectories and amplitude spectrums are given for galloping motions of linear cables. From such analytical solutions, galloping phenomenon in flow-induced vibration can be further understood. The galloping dynamics of linear cables is similar to the dynamics of the van der Pol oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. den Hartog JP (1932) Transmission line vibration due to sleet. AIEE Trans 4(51):1074–1086

    Google Scholar 

  2. Parkinson GV (1989) Phenomena and modeling of flow-induced vibrations of buff bodies. Prog Aerosp Sci 26:169–224

    Article  Google Scholar 

  3. Blevins RD (1977) Flow-induced vibration. Van Nostrand Reinhold Co., New York

    MATH  Google Scholar 

  4. Blevins RD(1974) Flow induced vibration. Ph.D. thesis California Institute of Technology, Pasadena

  5. Nigol O, Buchan PG (1981) Conductor galloping 2: torsional mechanism. IEEE Trans 100(2):708–720

    Google Scholar 

  6. Richardson AS Jr (1981) Dynamic analysis of lightly iced galloping in two degrees of freedom. Proc IEEE C 128(4):211–218

    Google Scholar 

  7. Richardson AS Jr (1988) Bluff body aerodynamics. ASCE J Struct Eng 112(7):1723–1726

    Article  Google Scholar 

  8. Edwards AT, Madeyski A (1956) Progress report on the investigation of galloping of transmission line conductors. AIEE Trans 75:666–686

    Google Scholar 

  9. Blevins RD, Iwan WD (1974) The galloping response of a two-degree-of-freedom system. ASME J Appl Mech 96(3):1113–1118

    Article  Google Scholar 

  10. Desai YM, Shah AH, Popplewell N (1990) Galloping analysis for two degree-of-freedom oscillator. J Eng Mech 116(12):2583–2602

    Article  Google Scholar 

  11. Yu P, Shah AH, Popplewell N (1993) Three-degree-of-freedom model for galloping (Parts I and II). J Eng Mech 119:2405–2448

    Google Scholar 

  12. Slate JE (1959) Aeroelastic instability of a structural angle section. Ph.D. thesis University of British Columbia, Vancouver

  13. Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New York

    MATH  Google Scholar 

  14. Luo ACJ (2012) Continuous dynamical systems. Higher Education Press/L&H Scientific Publishing, Beijing/Glen Carbon

    MATH  Google Scholar 

  15. Luo ACJ (2014) Toward analytical chaos in nonlinear systems. Wiley, New York

    Book  MATH  Google Scholar 

  16. Luo ACJ, Huang JZ (2012) Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J Vib Control 18:1661–1671

    Article  MathSciNet  Google Scholar 

  17. Luo ACJ, Huang JZ (2012) Analytical dynamics of period-m flows and chaos in nonlinear Systems. Int J Bifurc Chaos 22(4):Article No. 1250093

  18. Luo ACJ, Huang JZ (2012) Analytical routes of period-1 motions to chaos in a periodically forced Duffing oscillator with a twin-well potential. J Appl Nonlinear Dyn 1:73–108

    Article  MATH  Google Scholar 

  19. Luo ACJ, Huang JZ (2012) Unstable and stable period-m motions in a twin-well potential Duffing oscillator. Discontin Nonlinear Complex 1:113–145

    Article  MATH  Google Scholar 

  20. Luo ACJ, Yu B (2013) Analytical solutions for stable and unstable period-1 motions in a periodically forced oscillator with quadratic nonlinearity. ASME J Vib Acoust 135(3):Article No:034503

  21. Luo ACJ, Yu B (2013) Period-m motions and bifurcation trees in a periodically excited, quadratic nonlinear oscillator. Discontin Nonlinear Complex 2(3):263–288

    Article  MATH  Google Scholar 

  22. Luo ACJ, Yu B (2015) Complex period-1 motions in a periodically forced, quadratic nonlinear oscillator. J Vib Control 21(5):896–906

    Article  MathSciNet  Google Scholar 

  23. Luo ACJ, Laken AB (2013) Analytical solutions for period-m motions in a periodically forced van del Pol oscillator. Int J Dyn Control 1(2):99–155

    Article  Google Scholar 

  24. Cartwright ML, Littlewood JE (1945) On nonlinear differential equations of the second order I. The equation \(\ddot{y}-k(1-y^{2}){\dot{y}}+y=b\lambda k\cos (\lambda t+\alpha ), k\) large. J Lond Math Soc 20:180–189

    Article  MATH  Google Scholar 

  25. Levinson N (1949) A second order differential equation with singular solutions. Ann Math Second Ser 50(1):127–153

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo ACJ, Yu B (2015) Bifurcation trees of period-1 motions to chaos in a two-degree-of-freedom, nonlinear oscillator. Int J Bifurc Chaos 25:Article No.1550179

  27. Luo ACJ, Yu B (2016) Analytical period-1 motions to chaos in a two-degree-of-freedom oscillator with a hardening nonlinear spring. Int J Dyn Control (in press)

  28. Caetano EDS (2007) Cable vibrations in cable-stayed bridges, International Association for Bridge and Structural Engineering, Zurich, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Appendices

Appendix: Coefficients for cable galloping

In Appendix, coefficients for galloping cables are presented. Such coefficients are suitable for all fluid-induced vibration through the two-degrees-of-freedom oscillators.

1.1 Coefficients for Fourier integrations

The basic quantity variables are defined to simplify the complicated expressions in coefficients for nonlinear terms.

$$\begin{aligned} B_{k/m}= & {} \dot{{b}}_{2k/m} +\frac{k\Omega }{m}c_{2k/m} ,\;C_{k/m} ={\dot{c}}_{2k/m} -\frac{k\Omega }{m}b_{2k/m} ,\; \nonumber \\ P_{k/m}= & {} \dot{{b}}_{1k/m} +\frac{k\Omega }{m}c_{1k/m} ,\;Q_{k/m} ={\dot{c}}_{1k/m} -\frac{k\Omega }{m}b_{1k/m}.\nonumber \\ \end{aligned}$$
(59)

The delta functions for constant terms are

$$\begin{aligned} \Delta _1 \left( i,j,l\right)= & {} \delta _{j+l}^i +\delta _{l+i}^j +\delta _{i+j}^l , \nonumber \\ \Delta _2 \left( i,j,l\right)= & {} \delta _{j+l}^i +\delta _{l+i}^j -\delta _{i+j}^l , \nonumber \\ \Delta _2 \left( i,l,j\right)= & {} \delta _{j+l}^i +\delta _{i+j}^l -\delta _{l+i}^j , \nonumber \\ \Delta _2 \left( l,j,i\right)= & {} \delta _{l+i}^j +\delta _{i+j}^l -\delta _{j+l}^i . \end{aligned}$$
(60)

For the constant terms of nonlinear functions, we have

$$\begin{aligned} f_1^{(0)}= & {} \big ({\dot{a}}_{20}^{(m)} \big )^{3}+\frac{3}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \big (B_{i/m}^2 +C_{i/m}^2 \big )\nonumber \\&+\,\frac{1}{4} \sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3C_{i/m} C_{j/m} B_{l/m} \Delta _2 \left( i,j,l\right) \right. \nonumber \\&\left. +\,B_{i/m} B_{j/m} B_{l/m} \Delta _1 \left( i,j,l\right) \right] , \end{aligned}$$
(61)
$$\begin{aligned} f_2^{(0)}= & {} \big ({\dot{a}}_{20}^{(m)} \big )^{2}{\dot{a}}_{10}^{(m)} +{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( B_{i/m} P_{i/m} +C_{i/m} Q_{i/m} \right) \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\big (B_{i/m}^2 +C_{i/m}^2 \big )} \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ B_{i/m} B_{j/m} P_{l/m} \Delta _1 \left( i,j,l\right) \right. \nonumber \\&+\,C_{i/m} C_{j/m} P_{l/m} \Delta _2 \left( i,j,l\right) \nonumber \\&\left. +\,2B_{i/m} C_{j/m} Q_{l/m} \Delta _2 \left( l,j,i\right) \right] , \end{aligned}$$
(62)
$$\begin{aligned} f_3^{(0)}= & {} a_{20}^{(m)}\big ({\dot{a}}_{20}^{(m)} \big )^{2}+\frac{1}{2}a_{10}^{(m)} \sum _{i=1}^N \big (B_{i/m}^2 + C_{i/m}^2 \big )\nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\left( b_{2i/m} B_{i/m} +c_{2i/m} C_{i/m} \right) } \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} B_{j/m} B_{l/m} \Delta _2 \left( i,j,l\right) \right. \nonumber \\&+\,b_{2i/m} C_{j/m} C_{l/m} \Delta _2 \left( l,j,i\right) \nonumber \\&\left. +\,2c_{(2)i/m} B_{j/m} C_{l/m} \Delta _2 \left( i,l,j\right) \right] , \end{aligned}$$
(63)
$$\begin{aligned} f_4^{(0)}= & {} {\dot{a}}_{20}^{(m)} \big ({\dot{a}}_{10}^{(m)} \big )^{2}+\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N (P_{i/m}^2 +Q_{i/m}^2 )\nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\left( B_{i/m} P_{i/m} +C_{i/m} Q_{i/m}\right) } \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {[B_{i/m} P_{j/m} P_{l/m} \Delta _1 \left( i,j,l\right) } } } \nonumber \\&+\,B_{i/m} Q_{j/m} Q_{l/m} \Delta _2 \left( l,j,i\right) \nonumber \\&+\,2C_{i/m} P_{j/m} Q_{l/m} \Delta _2 \left( i,l,j\right) ], \end{aligned}$$
(64)
$$\begin{aligned} f_5^{(0)}= & {} a_{20}^{(m)} {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} \nonumber \\&+\,\frac{1}{2}\sum _{i=1}^N \left[ a_{20}^{(m)} \left( B_{i/m} P_{i/m} +C_{i/m} Q_{i/m}\right) \right. \nonumber \\&+\,{\dot{a}}_{10}^{(m)} \left( b_{2i/m} B_{i/m} +c_{2i/m} C_{i/m} \right) \nonumber \\&\left. +\,{\dot{a}}_{20}^{(m)} \left( b_{2i/m} P_{i/m} +c_{2i/m} Q_{i/m} \right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} B_{j/m} P_{l/m} \Delta _1 \left( i,j,l\right) \right. \nonumber \\&+\,b_{2i/m} C_{j/m} Q_{l/m} \Delta _2 \left( l,j,i\right) \;\nonumber \\&+\,c_{2i/m} B_{j/m} Q_{l/m} \Delta _2 \left( i,l,j\right) \nonumber \\&\left. +\,c_{2i/m} C_{j/m} P_{l/m} \Delta _2 \left( i,j,l\right) \right] , \end{aligned}$$
(65)
$$\begin{aligned} f_6^{(0)}= & {} \big (a_{20}^{(m)}\big )^{2}{\dot{a}}_{20}^{(m)} +a_{20}^{(m)} \sum _{i=1}^N \left( b_{2i/m} B_{i/m} +c_{2i/m} C_{i/m} \right) \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N {(b_{2i/m}^2 +c_{2i/m}^2 )} \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} b_{2j/m} B_{l/m} \Delta _1 \left( i,j,l\right) \right. \nonumber \\&+\,2b_{2i/m} c_{2j/m} C_{k/m} \Delta _2 \left( l,j,i\right) \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} B_{l/m} \Delta _2 \left( i,j,l\right) \right] , \end{aligned}$$
(66)
$$\begin{aligned} f_7^{(0)}= & {} \big ({\dot{a}}_{10}^{(m)} \big )^{3}+\frac{3}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \big (P_{i/m}^2 +\,Q_{i/m}^2 \big )\nonumber \\&+\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3Q_{i/m} Q_{j/m} P_{l/m} \Delta _2 \left( i,j,l\right) \right. \nonumber \\&\left. +\,P_{i/m} P_{j/m} P_{l/m} \Delta _1 \left( i,j,l\right) \right] , \end{aligned}$$
(67)
$$\begin{aligned} f_8^{(0)}= & {} \big ({\dot{a}}_{10}^{(m)} \big )^{2}a_{20}^{(m)} +\frac{1}{2} \sum _{i=1}^N \big [a_{20}^{(m)} \big (P_{i/m}^2 +Q_{i/m}^2 \big ) \nonumber \\&+\,2{\dot{a}}_{10}^{(m)} \left( b_{(2)i/m} P_{i/m} +c_{(2)i/m} Q_{i/m} \right) \big ] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} P_{j/m} P_{l/m} \Delta _1 \left( i,j,l\right) \right. \nonumber \\&+\,b_{2i/m} Q_{j/m} Q_{l/m} \Delta _2 \left( l,j,i\right) \nonumber \\&\left. +\,2c_{(2)i/m} P_{j/m} Q_{l/m} \Delta _2 \left( i,l,j\right) \right] , \end{aligned}$$
(68)
$$\begin{aligned} f_9^{(0)}= & {} \big (a_{20}^{(m)}\big )^{2}{\dot{a}}_{10}^{(m)} +\,\frac{1}{2}\sum _{i=1}^N \big [2a_{20}^{(m)} \big (b_{2i/m} P_{i/m} \nonumber \\&+\,c_{2i/m} Q_{i/m} \big ) +\,{\dot{a}}_{10}^{(m)} \big (b_{2i/m}^2 +c_{2i/m}^2 \big )\big ] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 2b_{2i/m} c_{2j/m} Q_{l/m} \Delta _2 \left( l,j,i\right) \right. \nonumber \\&+\,b_{2i/m} b_{2j/m} P_{l/m} \Delta _1 \left( i,j,l\right) \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} P_{l/m} \Delta _2 \left( i,j,l\right) \right] , \end{aligned}$$
(69)
$$\begin{aligned} f_{10}^{(0)}= & {} \big (a_{20}^{(m)}\big )^{3}+\frac{3}{2}\sum _{i=1}^N {a_{20}^{(m)} (b_{2i/m}^2 +c_{2i/m}^2 )} \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3c_{2i/m} c_{2j/m} b_{2l/m} \Delta _2 \left( i,j,l\right) \right. \nonumber \\&\left. +\,b_{2i/m} b_{2j/m} b_{2l/m} \Delta _1 \left( i,j,l\right) \right] , \end{aligned}$$
(70)
$$\begin{aligned} f_{11}^{(0)}= & {} \big (a_{10}^{(m)} \big )^{3}+\frac{3}{2}\sum _{i=1}^N {a_{10}^{(m)} \big (b_{1i/m}^2 +c_{1i/m}^2 \big )} \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3c_{1i/m} c_{1j/m} b_{1l/m} \Delta _2 \left( i,j,l\right) \right. \nonumber \\&\left. +\,b_{1i/m} b_{1j/m} b_{1l/m} \Delta _1 \left( i,j,l\right) \right] . \end{aligned}$$
(71)

Define delta functions for cosine terms

$$\begin{aligned} \Delta _3 \left( i,j,k,l\right)= & {} \delta _{i+l}^{j+k} +\delta _{i+l+k}^j +\delta _{i+j+l}^k +\delta _{k+j+l}^i +\delta _{k+i}^{l+j} \nonumber \\&+\,\delta _{i+j}^{l+k} +\delta _{k+i+j}^l , \nonumber \\ \Delta _4 \left( i,j,k,l\right)= & {} \delta _{i+l}^{j+k} +\delta _{i+l+k}^j -\delta _{i+j+l}^k +\delta _{k+j+l}^i +\delta _{k+i}^{l+j}\nonumber \\&-\,\delta _{i+j}^{l+k} -\delta _{k+i+j}^l , \nonumber \\ \Delta _5 \left( i,j,k,l\right)= & {} \delta _{i+l}^{j+k} +\delta _{i+l+k}^j -\delta _{i+j+l}^k -\delta _{k+j+l}^i \;-\;\delta _{k+i}^{l+j}\nonumber \\&+\,\delta _{i+j}^{l+k} +\delta _{k+i+j}^l , \nonumber \\ \Delta _6 \left( i,j,k,l\right)= & {} -\delta _{i+l}^{j+k} -\delta _{i+l+k}^j -\delta _{i+j+l}^k +\delta _{k+j+l}^i +\delta _{k+i}^{l+j}\nonumber \\&+\,\delta _{i+j}^{l+k} +\delta _{k+i+j}^l . \end{aligned}$$
(72)

The coefficients for cosine terms are

$$\begin{aligned} f_{1k}^{(c)}= & {} 3\big ({\dot{a}}_{20}^{(m)}\big )^{2}B_{k/m} \!+\! \frac{3}{2}{\dot{a}}_{10}^{(m)} \!\sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3C_{i/m} C_{j/m} B_{l/m} \Delta _4 \left( i,j,k,l\right) \right. \nonumber \\&\left. +\,B_{i/m} B_{j/m} B_{l/m} \Delta _3 \left( i,j,k,l\right) \right] , \end{aligned}$$
(73)
$$\begin{aligned} f_{2k}^{(c)}= & {} ({\dot{a}}_{20}^{(m)} )^{2}P_{k/m} +2{\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} B_{k/m} \nonumber \\&+\,{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ C_{i/m} C_{j/m} P_{l/m} \Delta _4 \left( i,j,k,l\right) \right. \nonumber \\&\left. +\,2B_{i/m} C_{j/m} Q_{l/m} \Delta _5 \left( i,j,k,l\right) \right] , \end{aligned}$$
(74)
$$\begin{aligned} f_{3k}^{(c)}= & {} 2{\dot{a}}_{20}^{(m)} a_{20}^{(m)} B_{k/m} +({\dot{a}}_{20}^{(m)} )^{2}b_{2k/m} \nonumber \\&+\,\frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} B_{j/m} B_{l/m} \Delta _3 \left( i,j,k,l\right) \right. \nonumber \\&+\,b_{2i/m} C_{j/m} C_{l/m} \Delta _5 \left( i,j,k,l\right) \nonumber \\&\left. +\,2c_{2i/m} B_{j/m} C_{l/m} \Delta _6 \left( i,j,k,l\right) \right] , \end{aligned}$$
(75)
$$\begin{aligned} f_{4k}^{(c)}= & {} 2{\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} P_{k/m} +\,\left( {\dot{a}}_{10}^{(m)} \right) ^{2}B_{k/m} \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ P_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,Q_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N [B_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \nonumber \\&+\,C_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) ] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ B_{i/m} P_{j/m} P_{l/m} \Delta _3 \left( i,j,k,l\right) \right. \nonumber \\&+\,B_{i/m} Q_{j/m} Q_{l/m} \Delta _5 \left( i,j,k,l\right) \nonumber \\&\left. +\,C_{i/m} P_{j/m} Q_{l/m} \Delta _6 \left( i,j,k,l\right) \right] , \end{aligned}$$
(76)
$$\begin{aligned} f_{5k}^{(c)}= & {} a_{20}^{(m)} {\dot{a}}_{20}^{(m)} P_{k/m} +\,a_{20}^{(m)} {\dot{a}}_{10}^{(m)} B_{k/m} \nonumber \\&+\,\frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] +{\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} b_{2k/m} \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} B_{j/m} P_{l/m} \Delta _3 \left( i,j,k,l\right) \right. \nonumber \\&+\,b_{2i/m} C_{j/m} Q_{l/m} \Delta _5 \left( i,j,k,l\right) \nonumber \\&+\,c_{2i/m} B_{j/m} Q_{l/m} \Delta _6 \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} C_{j/m} P_{l/m} \Delta _4 \left( i,j,k,l\right) \right] , \end{aligned}$$
(77)
$$\begin{aligned} f_{6k}^{(c)}= & {} \big (a_{20}^{(m)}\big )^{2}B_{k/m} +2a_{20}^{(m)} {\dot{a}}_{20}^{(m)} b_{2k/m} \nonumber \\&+\,a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N\left[ b_{2i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} b_{2j/m} B_{l/m} \Delta _3 \left( i,j,k,l\right) \right. \nonumber \\&+\,b_{2i/m} c_{2j/m} C_{l/m} \Delta _5 \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} B_{l/m} \Delta _4 \left( i,j,k,l\right) \right] , \end{aligned}$$
(78)
$$\begin{aligned} f_{7k}^{(c)}= & {} 3\big ({\dot{a}}_{10}^{(m)} \big )^2P_{k/m} {+}\frac{3}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N [P_{i/m} P_{j/m} \Delta _1 (i,j,k)\nonumber \\&+\,Q_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) ] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3Q_{i/m} Q_{j/m} P_{l/m} \Delta _4 \left( i,j,k,l\right) \right. \nonumber \\&\left. +\,P_{i/m} P_{j/m} P_{l/m} \Delta _3 \left( i,j,k,l\right) \right] , \end{aligned}$$
(79)
$$\begin{aligned} f_{8k}^{(c)}= & {} 2{\dot{a}}_{10}^{(m)} {\dot{a}}_{20}^{(m)} P_{k/m} \nonumber \\&+\,\frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ P_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,Q_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} P_{j/m} P_{l/m} \Delta _3 \left( i,j,k,l\right) \right. \nonumber \\&+\,b_{2i/m} Q_{j/m} Q_{l/m} \Delta _5 \left( i,j,k,l\right) \nonumber \\&\left. +\,2c_{2i/m} P_{j/m} Q_{l/m} \Delta _6 \left( i,j,k,l\right) \right] , \end{aligned}$$
(80)
$$\begin{aligned} f_{9k}^{(c)}= & {} \big (a_{20}^{(m)}\big )^{2}P_{k/m} +2{\dot{a}}_{10}^{(m)} a_{20}^{(m)} b_{2k/m} \nonumber \\&+\,a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&+\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} \Delta _2 \left( i,j,k\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ b_{2i/m} b_{2j/m} P_{l/m} \Delta _3 \left( i,j,k,l\right) \right. \nonumber \\&+\,2b_{2i/m} c_{2j/m} Q_{l/m} \Delta _5 \left( i,j,k,l\right) +\nonumber \\&\left. +\,c_{2i/m} c_{2j/m} P_{l/m} \Delta _4 \left( i,j,k,l\right) \right] , \end{aligned}$$
(81)
$$\begin{aligned} f_{10}^{(c)}= & {} 3\big (a_{20}^{(m)}\big )^{2}b_{2k/m} +\frac{3}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N [b_{2i/m} b_{2j/m} \Delta _1 (i,j,k)\nonumber \\&+\,c_{2i/m} c_{2j/m} \Delta _3 (i,j,k)]\nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N\big [3c_{2i/m} c_{2j/m} b_{2l/m} \Delta _4 \left( i,j,k,l\right) \nonumber \\&+\,b_{2i/m} b_{2j/m} b_{2l/m} \Delta _3 \left( i,j,k,l\right) \big ], \end{aligned}$$
(82)
$$\begin{aligned} f_{11}^{(c)}= & {} 3\big (a_{10}^{(m)} \big )^{2}b_{1k/m} +\frac{3}{2}a_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \big [b_{1i/m} b_{1j/m} \Delta _1 (i,j,k)\nonumber \\&+\,c_{1i/m} c_{1j/m} \Delta _3 (i,j,k)\big ] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N 3c_{1i/m} c_{1j/m} b_{1l/m} \Delta _4 \left( i,j,k,l\right) \nonumber \\&+\,b_{1i/m} b_{1j/m} b_{1l/m} \Delta _3 \left( i,j,k,l\right) \big ]. \end{aligned}$$
(83)

Define delta functions for sine terms as follows

$$\begin{aligned} \Delta _7 \left( i,j,k,l\right)= & {} -\delta _{i+l}^{j+k} +\delta _{i+l+k}^j +\delta _{i+j+l}^k -\delta _{k+j+l}^i +\delta _{k+i}^{l+j} \nonumber \\&+\,\delta _{i+j}^{l+k} -\delta _{k+i+j}^l , \nonumber \\ \Delta _8 \left( i,j,k,l\right)= & {} \delta _{i+l}^{j+k} -\delta _{i+l+k}^j -\delta _{i+j+l}^k -\delta _{k+j+l}^i +\delta _{k+i}^{l+j} \nonumber \\&+\,\delta _{i+j}^{l+k} -\delta _{k+i+j}^l , \nonumber \\ \Delta _9 \left( i,j,k,l\right)= & {} \delta _{i+l}^{j+k} -\delta _{i+l+k}^j +\,\delta _{i+j+l}^k -\delta _{k+j+l}^i \nonumber \\&+\delta _{k+i}^{l+j} -\delta _{i+j}^{l+k} +\delta _{k+i+j}^l , \nonumber \\ \Delta _{10} \left( i,j,k,l\right)= & {} \delta _{i+l}^{j+k} -\delta _{i+l+k}^j +\,\delta _{i+j+l}^k +\delta _{k+j+l}^i \nonumber \\&-\delta _{k+i}^{l+j} +\delta _{i+j}^{l+k} -\delta _{k+i+j}^l. \end{aligned}$$
(84)

For since nonlinear terms, the coefficients functions are

$$\begin{aligned} f_{1k}^{(s)}= & {} 3({\dot{a}}_{20}^{(m)} )^{2}C_{k/m} +\,3{\dot{a}}_{20}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} \Delta _2 \left( k,j,i\right) } } \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3B_{i/m} C_{j/m} B_{l/m} \Delta _7 \left( i,j,k,l\right) \right. \nonumber \\&\left. +\,C_{i/m} C_{j/m} C_{l/m} \Delta _8 \left( i,j,k,l\right) \right] , \end{aligned}$$
(85)
$$\begin{aligned} f_{2k}^{(s)}= & {} ({\dot{a}}_{20}^{(m)} )^{2}Q_{k/m} +2{\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} C_{k/m} \nonumber \\&+\,{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\,C_{i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] \nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} \Delta _2 \left( k,j,i\right) } }\nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ B_{i/m} B_{j/m} Q_{l/m} \Delta _9 \left( i,j,k,l\right) \right. \nonumber \\&+\,C_{i/m} C_{j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) \nonumber \\&\left. +\,2B_{i/m} C_{j/m} P_{l/m} \Delta _7 \left( i,j,k,l\right) \right] , \end{aligned}$$
(86)
$$\begin{aligned} f_{3k}^{(s)}= & {} 2{\dot{a}}_{20}^{(m)} a_{20}^{(m)} C_{k/m} +({\dot{a}}_{20}^{(m)} )^{2}c_{2k/m} \nonumber \\&+\,a_{20}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} } \Delta _2 \left( k,j,i\right) } \nonumber \\&+\,{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} C_{j/m} \Delta _2 \left( k,j,i\right) \right] \nonumber \\&+\,c_{2i/m} B_{j/m} \Delta _2 \left( i,k,j\right) ]\nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 2b_{2i/m} B_{j/m} C_{l/m} \Delta _9 \left( i,j,k,l\right) \right. \nonumber \\&+\,c_{2i/m} B_{j/m} B_{l/m} \Delta _{10} \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} C_{j/m} C_{l/m} \Delta _8 \left( i,j,k,l\right) \right] , \end{aligned}$$
(87)
$$\begin{aligned} f_{4k}^{(s)}= & {} 2{\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} Q_{k/m} +\big ({\dot{a}}_{10}^{(m)} \big )^{2}C_{k/m} \nonumber \\&+\,{\dot{a}}_{20}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {P_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) } } \nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&+\left. \,C_{i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 2B_{i/m} P_{j/m} Q_{l/m} \Delta _9 \left( i,j,k,l\right) \right. \nonumber \\&+\,C_{i/m} P_{j/m} P_{l/m} \Delta _{10} \left( i,j,k,l\right) \nonumber \\&+\left. \,C_{i/m} Q_{j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) \right] , \end{aligned}$$
(88)
$$\begin{aligned} f_{5k}^{(s)}= & {} a_{20}^{(m)} {\dot{a}}_{20}^{(m)} Q_{k/m} +a_{20}^{(m)} {\dot{a}}_{10}^{(m)} C_{k/m} +\,{\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} c_{2k/m} \nonumber \\&+\,\frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N [B_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \nonumber \\&+\,C_{i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2j/m} Q_{j/m} \Delta _2 \left( k,j,i\right) )\right. \nonumber \\&\left. +\,c_{2i/m} P_{j/m} \Delta _2 \left( i,k,j\right) )\right] \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} C_{j/m} \Delta _2 \left( k,j,i\right) )\right. \nonumber \\&\left. +\,c_{2i/m} B_{j/m} \Delta _2 \left( i,k,j\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \big [b_{2i/m} B_{j/m} Q_{l/m} \Delta _9 \left( i,j,k,l\right) \nonumber \\&+\,b_{2i/m} C_{j/m} P_{l/m} \Delta _7 \left( i,j,k,l\right) \nonumber \\&+\,c_{2i/m} B_{j/m} P_{l/m} \Delta _{10} \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} C_{j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) )\right] , \end{aligned}$$
(89)
$$\begin{aligned} f_{6k}^{(s)}= & {} \big (a_{20}^{(m)}\big )^{2}C_{k/m} +2a_{20}^{(m)} {\dot{a}}_{20}^{(m)} c_{2k/m} \nonumber \\&+\,a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ c_{2i/m} B_{j/m} \Delta _2 \left( i,k,j\right) \right. \nonumber \\&\left. +\,b_{2i/m} C_{j/m} \Delta _2 \left( k,j,i\right) \right] \nonumber \\&+\,{\dot{a}}_{20}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {c_{2i/m} b_{2j/m} \Delta _2 \left( i,k,j\right) } } \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N {\sum _{j=1}^N {\sum _{k=1}^N \left[ {b_{2i/m} b_{2j/m} C_{l/m} \Delta _9 \left( i,j,k,l\right) } \right. }} )\nonumber \\&+\,2b_{2i/m} c_{2j/m} B_{l/m} \Delta _7 \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} C_{l/m} \Delta _9 \left( i,j,k,l\right) )\right] , \end{aligned}$$
(90)
$$\begin{aligned} f_{7k}^{(s)}= & {} 3\big ({\dot{a}}_{10}^{(m)} \big )^{2}Q_{k/m} \nonumber \\&+\,3{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {P_{j/m} Q_{k/m} } \Delta _2 \left( k,j,i\right) } \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3P_{i/m} Q_{j/m} P_{l/m} \Delta _7 \left( i,j,k,l\right) \right. \nonumber \\&\left. +\,Q_{i/m} Q_{j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) \right] , \end{aligned}$$
(91)
$$\begin{aligned} f_{8k}^{(s)}= & {} 2{\dot{a}}_{10}^{(m)} a_{20}^{(m)} Q_{k/m} +a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N P_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\big ({\dot{a}}_{10}^{(m)} \big )^{2}c_{2k/m} +{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} Q_{j/m} \Delta _2 (k,j,i) )\right. \nonumber \\&\left. +\,c_{2i/m} P_{j/m} \Delta _2 (i,k,j))\right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N \left[ 2b_{2i/m} P_{j/m} Q_{l/m} \Delta _9 \left( i,j,k,l\right) )\right. } }\nonumber \\&+\,c_{2i/m} P_{j/m} P_{l/m} \Delta _{10} \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} Q_{j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) )\right] , \end{aligned}$$
(92)
$$\begin{aligned} f_{9k}^{(s)}= & {} \big (a_{20}^{(m)}\big )^{2}Q_{k/m} +2{\dot{a}}_{10}^{(m)} a_{20}^{(m)} c_{2k/m} \nonumber \\&+\,{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {b_{2i/m} c_{2j/m} \Delta _2 \left( k,j,i\right) } } \nonumber \\&+\,a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\,c_{2i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 2b_{2i/m} c_{2j/m} P_{l/m} \Delta _7 \left( i,j,k,l\right) \right. \nonumber \\&+\,b_{2i/m} b_{2j/m} Q_{l/m} \Delta _9 \left( i,j,k,l\right) \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) \right] , \end{aligned}$$
(93)
$$\begin{aligned} f_{10k}^{(s)}= & {} 3\big (a_{20}^{(m)}\big )^{2}c_{2k/m} \nonumber \\&+3a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N {b_{2i/m} c_{2j/m} } \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N \sum _{j=1}^N \sum _{l=1}^N \left[ 3b_{2i/m} c_{2j/m} b_{2l/m} \Delta _7 \left( i,j,k,l\right) \right. \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} c_{2l/m} \Delta _8 \left( i,j,k,l\right) \right] , \end{aligned}$$
(94)
$$\begin{aligned} f_{11k}^{(s)}= & {} 3\big (a_{10}^{(m)} \big )^{2}c_{1k/m} \nonumber \\&+3a_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N {b_{1i/m} c_{1j/m} } \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\frac{1}{4}\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {\left[ 3b_{1i/m} c_{1j/m} b_{1l/m} \Delta _7 \left( i,j,k,l\right) \right. } } } \nonumber \\&\left. +\,c_{1i/m} c_{1j/m} c_{1l/m} \Delta _8 \left( i,j,k,l\right) \right] . \end{aligned}$$
(95)

Derivatives of coefficients with displacement

Derivatives of \(f_\lambda ^{(0)} \) (\(\lambda =1,2,\ldots ,11)\) with respect to \(z_r \) will be given. The first term for the constant coefficient is

$$\begin{aligned} g_{1r}^{(0)} =g_{1r}^{(0)} (1)+\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {\frac{1}{4}g_{1r}^{(0)} \left( i,j,l,q\right) } } }} \end{aligned}$$
(96)

where

$$\begin{aligned} g_{1r}^{(0)} (1)= & {} 3{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( \frac{i\Omega }{m}\right) [\delta _{i+3N+1}^r B_{i/m} \nonumber \\&-\,\delta _{i+2N+1}^r C_{i/m} \left( \frac{i\Omega }{m}\right) ] , \nonumber \\ g_{1r}^{(0)} \left( i,j,l,1\right)= & {} 3\left[ -\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} B_{l/m} \right. \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} B_{l/m} \nonumber \\&\left. +\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) C_{i/m} C_{j/m} \right] \Delta _2 \left( i,j,l\right) ,\nonumber \\ g_{1r}^{(0)} \left( i,j,l,2\right)= & {} [\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) B_{j/m} B_{l/m} \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) B_{i/m} B_{j/m} ]\Delta _1 \left( i,j,l\right) .\nonumber \\ \end{aligned}$$
(97)

The second term for the constant coefficient is

$$\begin{aligned} g_{2r}^{(0)}= & {} g_{2r}^{(0)} (1)+g_{2r}^{(0)} (2)\nonumber \\&+\,\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{2r}^{(0)} \left( i,j,l,q\right) } } } } \end{aligned}$$
(98)

where

$$\begin{aligned} g_{2r}^{(0)} (1)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( \frac{i\Omega }{m}\right) \left[ \delta _{i+3N+1}^r P_{i/m} +\delta _{i+N}^r B_{i/m} \right. \nonumber \\&\left. -\,\delta _{i+2N+1}^r Q_{i/m} -\delta _i^r C_{i/m} \right] , \nonumber \\&g_{2r}^{(0)} (2)={\dot{a}}_{10}^{(m)} \sum _{i=1}^N \left( \frac{i\Omega }{m}\right) \left[ \delta _{i+3N+1}^r B_{i/m} \right. \nonumber \\&\left. -\delta _{l+2N+1}^r C_{i/m} \right] , \nonumber \\ g_{2r}^{(0)} \left( i,j,l,1\right)= & {} \left[ \left( \frac{i\Omega }{m}\right) \delta _{i+3N+1}^r B_{j/m} P_{l/m}\right. \nonumber \\&+\,\left( \frac{j\Omega }{m}\right) \delta _{j+3N+1}^r B_{i/m} P_{l/m} \nonumber \\&\left. +\,\left( \frac{l\Omega }{m}\right) \delta _{l+N}^r B_{i/m} B_{j/m} \right] \Delta _1 \left( i,j,l\right) , \nonumber \\ g_{2r}^{(0)} \left( i,j,l,2\right)= & {} \left[ -\left( \frac{i\Omega }{m}\right) \delta _{i+2N+1}^r C_{j/m} P_{l/m} \right. \nonumber \\&-\,\left( \frac{j\Omega }{m}\right) \delta _{j+2N+1}^r C_{i/m} P_{l/m} \nonumber \\&\left. +\,\left( \frac{l\Omega }{m}\right) \delta _{l+N}^r C_{i/m} C_{j/m} \right] \Delta _2 \left( i,j,l\right) , \nonumber \\ g_{2r}^{(0)} \left( i,j,l,3\right)= & {} 2\left[ \left( \frac{i\Omega }{m}\right) \delta _{i+3N+1}^r C_{j/m} Q_{l/m}\right. \nonumber \\&-\,\left( \frac{j\Omega }{m}\right) \delta _{j+2N+1}^r B_{i/m} Q_{l/m} \nonumber \\&\left. -\,\left( \frac{l\Omega }{m}\right) \delta _l^r B_{i/m} C_{j/m} \right] \Delta _2 \left( l,j,i\right) \}. \end{aligned}$$
(99)

The third term for the constant coefficient is

$$\begin{aligned} g_{3r}^{(0)} =\sum _{p=1}^3 {g_{3r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{3r}^{(0)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(100)

where

$$\begin{aligned} g_{3r}^{(0)} (1)= & {} a_{20}^{(m)} ({\dot{a}}_{20}^{(m)} )^{2}, \nonumber \\ g_{3r}^{(0)} (2)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( \frac{i\Omega }{m}\right) \left( \delta _{i+3N+1}^r B_{i/m} \right. \nonumber \\&\left. -\,\delta _{i+2N+1}^r C_{i/m} \right) , \nonumber \\ g_{3r}^{(0)} (3)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left[ (\delta _{i+2N+1}^r B_{i/m} +\delta _{i+3N+1}^r C_{i/m} )\right. \nonumber \\&+\,\left. \left( \frac{i\Omega }{m}\right) (\delta _{i+3N+1}^r b_{2i/m} -\delta _{i+2N+1}^r c_{2i/m} )\right] \nonumber \\ g_{3r}^{(0)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r B_{j/m} B_{l/m} \right. \nonumber \\&+\,\left( \frac{j\Omega }{m}\right) \delta _{j+3N+1}^r b_{2i/m} B_{l/m} \nonumber \\&+\,\left. \left( \frac{l\Omega }{m}\right) \delta _{l+3N+1}^r b_{2i/m} B_{j/m} \right] \Delta _2 \left( i,j,l\right) , \nonumber \\ g_{3r}^{(0)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r C_{j/m} C_{l/m} \right. \nonumber \\&-\,\left( \frac{j\Omega }{m}\right) \delta _{j+2N+1}^r b_{2i/m} C_{l/m}\nonumber \\&-\,\left. \left( \frac{l\Omega }{m}\right) \delta _{l+2N+1}^r b_{2i/m} C_{j/m} \right] \Delta _2 \left( l,j,i\right) , \nonumber \\ g_{3r}^{(0)} \left( i,j,l,3\right)= & {} 2\left[ \delta _{i+3N+1}^r B_{j/m} C_{l/m} \right. \nonumber \\&+\,\left( \frac{j\Omega }{m}\right) \delta _{j+3N+1}^r c_{2i/m} C_{l/m} \nonumber \\&-\,\left. \left( \frac{l\Omega }{m}\right) \delta _{l+2N+1}^r c_{2i/m} B_{j/m} \right] \Delta _2 \left( i,l,j\right) .\nonumber \\ \end{aligned}$$
(101)

The fourth term for the constant coefficient is

$$\begin{aligned} g_{4r}^{(0)} =\sum _{p=1}^2 {g_{4r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{4r}^{(0)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(102)

where

$$\begin{aligned} g_{4r}^{(0)} (1)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( \frac{i\Omega }{m}\right) [\delta _{i+N}^r P_{i/m} -\delta _i^r Q_{i/m} ), \nonumber \\ g_{4r}^{(0)} (2)= & {} {\dot{a}}_{10} \sum _{i=1}^N \left( \frac{i\Omega }{m}\right) (\delta _{i+3N+1}^r P_{i/m} \nonumber \\&+\,\delta _{i+N}^r B_{i/m} -\delta _{i+2N+1}^r Q_{i/m} -\delta _i^r C_{i/m}), \nonumber \\ g_{4r}^{(0)} \left( i,j,l,1\right)= & {} \left[ \left( \frac{i\Omega }{m}\right) \delta _{i+3N+1}^r P_{j/m} P_{l/m} \right. \nonumber \\&+\,\left( \frac{j\Omega }{m}\right) \delta _{j+N}^r B_{i/m} P_{l/m} \nonumber \\&+\,\left. \left( \frac{l\Omega }{m}\right) \delta _{l+N}^r B_{i/m} P_{j/m} \right] \Delta _1 \left( i,j,l\right) , \nonumber \\ g_{4r}^{(0)} \left( i,j,l,2\right)= & {} \left[ \left( \frac{i\Omega }{m}\right) \delta _{i+3N+1}^r Q_{j/m} Q_{l/m}\right. \nonumber \\&-\,\left( \frac{j\Omega }{m}\right) \delta _j^r B_{i/m} Q_{l/m}\nonumber \\&-\,\left. \left( \frac{l\Omega }{m}\right) \delta _l^r B_{i/m} Q_{j/m} \right] \Delta _2 \left( l,j,i\right) , \nonumber \\ g_{4r}^{(0)} \left( i,j,l,3\right)= & {} -2\left[ \left( \frac{i\Omega }{m}\right) \delta _{i+2N+1}^r P_{j/m} Q_{l/m} \right. \nonumber \\&-\,\left( \frac{j\Omega }{m}\right) \delta _{j+N}^r C_{i/m} Q_{l/m} \nonumber \\&+\,\left. \left( \frac{l\Omega }{m}\right) \delta _l^r C_{i/m} P_{j/m} \right] \Delta _2 \left( i,l,j\right) ].\nonumber \\ \end{aligned}$$
(103)

The fifth term for the constant coefficient is

$$\begin{aligned} g_{5r}^{(0)} =\sum _{p=1}^4 {g_{5r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^4 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{5r}^{(0)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(104)

where

$$\begin{aligned} g_{5r}^{(0)} (1)= & {} \delta _{2N+1}^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ g_{5r}^{(0)} (2)= & {} \frac{1}{2}\sum _{i=1}^N {\{\delta _{2N+1}^r \left( B_{i/m} P_{i/m} +C_{i/m} Q_{i/m}\right) } \nonumber \\&+\,a_{20}^{(m)} \left( \frac{i\Omega }{m}\right) [\delta _{i+3N+1}^r P_{i/m} +\delta _{i+N}^r B_{i/m} ]\nonumber \\&-\,a_{20}^{(m)} \left( \frac{i\Omega }{m}\right) [\delta _{i+2N+1}^r Q_{i/m} +C_{i/m} \delta _i^r Q_{i/m} ]\}, \nonumber \\ g_{5r}^{(0)} (3)= & {} {\dot{a}}_{10} \{\left[ \delta _{i+2N+1}^r B_{i/m} +\left( \frac{i\Omega }{m}\right) \delta _{i+3N+1}^r b_{2i/m} \right] \nonumber \\&+\,[\delta _{i+3N+1}^r C_{i/m} -\left( \frac{i\Omega }{m}\right) \delta _{i+2N+1}^r c_{2i/m} ]\}, \nonumber \\ g_{5r}^{(0)} (4)= & {} {\dot{a}}_{20} \{[\delta _{i+2N+1}^r P_{i/m} +\left( \frac{i\Omega }{m}\right) \delta _{i+N}^r b_{2i/m} ]\nonumber \\&+\,[\delta _{i+3N+1}^r Q_{i/m} -\left( \frac{i\Omega }{m}\right) \delta _i^r c_{(2)i/m} )]\}, \nonumber \\ g_{5r}^{(0)} \left( i,j,l,1\right)= & {} [\delta _{i+2N+1}^r B_{j/m} P_{l/m} +\left( \frac{j\Omega }{m}\right) \delta _{j+3N+1}^r b_{2i/m} P_{l/m} \nonumber \\&+\,\left( \frac{l\Omega }{m}\right) \delta _{l+N}^r b_{(2)i/m} B_{j/m} ]\Delta _1 \left( i,j,l\right) , \nonumber \\ g_{5r}^{(0)} \left( i,j,l,2\right)= & {} [\delta _{i+2N+1}^r C_{j/m} Q_{l/m} -\left( \frac{j\Omega }{m}\right) \delta _{j+2N+1}^r b_{2i/m} Q_{l/m} \nonumber \\&-\,\left( \frac{l\Omega }{m}\right) \delta _l^r b_{2i/m} C_{j/m} ]\Delta _2 \left( l,j,i\right) , \nonumber \\ g_{5r}^{(0)} \left( i,j,l,3\right)= & {} [\delta _{i+3N+1}^r B_{j/m} Q_{l/m} +\left( \frac{j\Omega }{m}\right) \delta _{j+3N+1}^r c_{2i/m} Q_{l/m} \nonumber \\&-\,\left( \frac{l\Omega }{m}\right) \delta _l^r c_{2i/m} B_{j/m} ]\Delta _2 \left( i,l,j\right) ,\nonumber \\ g_{5r}^{(0)} \left( i,j,l,4\right)= & {} [\delta _{i+3N+1}^r C_{j/m} P_{l/m} \nonumber \\&-\,\left( \frac{j\Omega }{m}\right) \delta _{j+2N+1}^r c_{2i/m} P_{l/m} \nonumber \\&+\,\left( \frac{l\Omega }{m}\right) \delta _{l+N}^r c_{2i/m} C_{j/m} ]\Delta _2 \left( i,j,l\right) . \end{aligned}$$
(105)

The sixth term for the constant coefficient is

$$\begin{aligned} g_{6r}^{(0)} =\sum _{p=1}^4 {g_{6r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{6r}^{(0)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(106)

where

$$\begin{aligned} g_{6r}^{(0)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ g_{6r}^{(0)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N {\left( b_{2i/m} B_{i/m} +c_{2i/m} C_{i/m} \right) } , \nonumber \\ g_{6r}^{(0)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \{[\delta _{i+2N+1}^r B_{i/m} \nonumber \\&+ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) b_{2i/m} ]\nonumber \\&+\,[\delta _{i+3N+1}^r c_{2i/m} C_{i/m} -\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) c_{2i/m} ]\}, \nonumber \\ g_{6r}^{(0)} (4)= & {} {\dot{a}}_{20} \sum _{i=1}^N (\delta _{i+2N+1}^r b_{2i/m} \nonumber \\&+\,\delta _{i+3N+1}^r c_{2i/m} ) , \nonumber \\ g_{6r}^{(0)} \left( i,j,l,1\right)= & {} [\delta _{i+2N+1}^r b_{2j/m} B_{l/m} +\delta _{j+2N+1}^r b_{2i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} b_{2j/m} ]\Delta _1 \left( i,j,l\right) , \nonumber \\ g_{6r}^{(0)} \left( i,j,l,2\right)= & {} 2[\delta _{i+2N+1}^r c_{2j/m} C_{k/m}\nonumber \\&+\,\delta _{j+3N+1}^r b_{2i/m} C_{k/m} \nonumber \\&-\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} c_{2j/m} ]\Delta _2 \left( l,j,i\right) , \nonumber \\ g_{6r}^{(0)} \left( i,j,l,3\right)= & {} [\delta _{i+3N+1}^r c_{2j/m} B_{l/m} +\delta _{j+3N+1}^r c_{2i/m} B_{l/m}\nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) c_{(2)i/m} c_{(2)j/m} ]\Delta _2 \left( i,j,l\right) ].\nonumber \\ \end{aligned}$$
(107)

The seventh term for the constant coefficient is

$$\begin{aligned} g_{7r}^{(0)} =g_{7r}^{(0)} (1)+\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{7r}^{(0)} \left( i,j,l,q\right) } } } } \end{aligned}$$
(108)

where

$$\begin{aligned} g_{7r}^{(0)} (1)= & {} 3{\dot{a}}_{10} \sum _{i=1}^N {\left( \frac{i\Omega }{m}\right) (\delta _{i+N}^r P_{i/m} -\delta _i^r Q_{i/m} )} , \nonumber \\ g_{7r}^{(0)} \left( i,j,l,1\right)= & {} 3[-\delta _i^r \left( \frac{i\Omega }{m}\right) Q_{j/m} P_{l/m} \nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) Q_{i/m} P_{l/m} \nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) Q_{i/m} Q_{j/m} P_{l/m} ]\Delta _2 \left( i,j,l\right) , \nonumber \\ g_{7r}^{(0)} \left( i,j,l,2\right)= & {} [\delta _{i+N}^r \left( \frac{i\Omega }{m}\right) P_{j/m} P_{k/m} \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) P_{i/m} P_{l/m} \nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) P_{i/m} P_{j/m} ]\Delta _1 \left( i,j,l\right) .\nonumber \\ \end{aligned}$$
(109)

The eighth term for the constant coefficient is

$$\begin{aligned} g_{8r}^{(0)} =\sum _{p=1}^2 {g_{8r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{8r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(110)

where

$$\begin{aligned} g_{8r}^{(0)} (1)= & {} \big ({\dot{a}}_{10}^{(m)} \big )^{2}\delta _{2N+1}^r , \nonumber \\ g_{8r}^{(0)} (2)= & {} \frac{1}{2}\sum _{i=1}^N \{[\delta _{2N+1}^r (P_{i/m}^2 +Q_{i/m}^2 ) \nonumber \\&+\,2a_{20}^{(m)} \left( \frac{i\Omega }{m}\right) (\delta _{i+N}^r P_{i/m} +\delta _i^r Q_{i/m} )] \nonumber \\&+\,2{\dot{a}}_{10} [\delta _{i+2N+1}^r P_{i/m} +\delta _{i+N}^r \left( \frac{i\Omega }{m}\right) b_{2i/m}\nonumber \\&+\,\delta _{i+3N+1}^r Q_{i/m} -\delta _i^r \left( \frac{i\Omega }{m}\right) c_{2i/m} ]\}, \nonumber \\ g_{8r}^{(0)} \left( i,j,l,1\right)= & {} \delta _{i+2N+1}^r P_{j/m} P_{l/m} \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} P_{l/m} \nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} P_{j/m} ]\Delta _1 \left( i,j,l\right) , \nonumber \\ g_{8r}^{(0)} \left( i,j,l,2\right)= & {} [\delta _{i+2N+1}^r Q_{j/m} Q_{l/m} \nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) b_{2i/m} Q_{l/m}\nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} Q_{j/m} ]\Delta _2 \left( l,j,i\right) , \nonumber \\ g_{8r}^{(0)} \left( i,j,l,3\right)= & {} 2\left[ \delta _{i+3N+1}^r P_{j/m} Q_{l/m} \right. \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} P_{j/m} Q_{l/m}\nonumber \\&-\left. \,\delta _l^r \left( \frac{l\Omega }{m}\right) c_{2i/m} P_{j/m} \right] \Delta _2 \left( i,l,j\right) ].\nonumber \\ \end{aligned}$$
(111)

The ninth term for the constant coefficient is

$$\begin{aligned} g_{9r}^{(0)} =\sum _{p=1}^2 {g_{9r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{9r}^{(0)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(112)

where

$$\begin{aligned} g_{9r}^{(0)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ g_{9r}^{(0)} (2)= & {} \frac{1}{2}\sum _{i=1}^N {[2\delta _{2N+1}^r \left( b_{2i/m} P_{i/m} +c_{2i/m} Q_{i/m} \right) } ]\nonumber \\&+\,2a_{20}^{(m)} [\delta _{i+2N+1}^r P_{i/m} +\delta _{i+N}^r \left( \frac{i\Omega }{m}\right) b_{2i/m} \nonumber \\&+\,\delta _{i+3N+1}^r Q_{i/m} -\delta _i^r \left( \frac{i\Omega }{m}\right) c_{2i/m} ]\nonumber \\&+\,{\dot{a}}_{10} [\delta _{i+2N+1}^r b_{2i/m} +\delta _{i+3N+1}^r c_{2i/m} ], \nonumber \\ g_{9r}^{(0)} \left( i,j,l,1\right)= & {} 2[\delta _{i+2N+1}^r c_{2j/m} Q_{l/m} +\delta _{j+3N+1}^r b_{2i/m} Q_{l/m} \nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} c_{2j/m} Q_{l/m} ]\Delta _2 \left( l,j,i\right) , \nonumber \\ g_{9r}^{(0)} \left( i,j,l,2\right)= & {} [\delta _{i+2N+1}^r b_{2j/m} P_{l/m} +\delta _{j+2N+1}^r b_{2i/m} P_{l/m} \nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} b_{2j/m} ]\Delta _1 \left( i,j,l\right) ,\nonumber \\ g_{9r}^{(0)} \left( i,j,l,3\right)= & {} [\delta _{i+3N+1}^r c_{2j/m} P_{l/m} +\delta _{i+3N+1}^r c_{2i/m} P_{l/m} \nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} c_{2j/m} ]\Delta _2 \left( i,j,l\right) . \end{aligned}$$
(113)

The tenth term for the constant coefficient is

$$\begin{aligned} g_{10r}^{(0)} =\sum _{p=1}^2 {g_{10r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{10r}^{(0)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(114)

where

$$\begin{aligned} g_{10r}^{(0)} (1)= & {} 3\left( a_{20}^{(m)}\right) ^{2}\delta _{2N+1}^r , \nonumber \\ g_{10r}^{(0)} (2)= & {} \frac{3}{2}\sum _{i=1}^N {[\delta _{2N+1}^r (b_{2i/m}^2 +c_{2i/m}^2 )} \nonumber \\&+\,2a_{20}^{(m)} (\delta _{i+2N+1}^r b_{2i/m} +\delta _{i+3N+1}^r c_{2i/m} )],\nonumber \\ g_{10r}^{(0)} \left( i,j,l,1\right)= & {} 3[\delta _{i+3N+1}^r c_{2j/m} b_{2l/m} +\delta _{j+3N+1}^r c_{2i/m} b_{2l/m} \nonumber \\&+\,\delta _{l+2N+1}^r c_{2i/m} c_{2j/m} ]\Delta _2 \left( i,j,l\right) ,\nonumber \\ g_{10r}^{(0)} \left( i,j,l,2\right)= & {} [\delta _{i+2N+1}^r b_{2j/m} b_{2l/m} +\delta _{j+2N+1}^r b_{2i/m} b_{2l/m} \nonumber \\&+\,\delta _{l+2N+1}^r b_{2i/m} b_{2j/m} ]\Delta _1 \left( i,j,l\right) .\nonumber \\ \end{aligned}$$
(115)

The eleventh term for the constant coefficient of the transverse motion is

$$\begin{aligned} g_{11r}^{(0)} =\sum _{p=1}^2 {g_{11r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{11r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(116)

where

$$\begin{aligned} g_{11r}^{(0)} (1)= & {} 3\big (a_{10}^{(m)} \big )^{2}\delta _0^r , \\ g_{11r}^{(0)} (2)= & {} \frac{3}{2}\sum _{i=1}^N {\big [\delta _0^r (b_{1i/m}^2 +c_{1i/m}^2 )} +2a_{10}^{(m)} (\delta _i^r b_{1i/m} \\&+\,\delta _{i+N}^r c_{1i/m} )\big ], \end{aligned}$$
$$\begin{aligned} g_{11r}^{(0)} \left( i,j,l,1\right)= & {} 3\big [\delta _{i+N}^r c_{1j/m} b_{1l/m} +\delta _{j+N}^r c_{1i/m} b_{1l/m}\nonumber \\&+\,\delta _l^r c_{1i/m} c_{1j/m} \big ]\Delta _2 \left( i,j,l\right) , \nonumber \\ g_{11r}^{(0)} \left( i,j,l,2\right)= & {} \big [\delta _i^r b_{1j/m} b_{1l/m} +\delta _j^r b_{1i/m} b_{1l/m} \nonumber \\&+\,\delta _l^r b_{1i/m} b_{1j/m} \big ]\Delta _1 \left( i,j,l\right) . \end{aligned}$$
(117)

For cosine term derivatives, the first term for the cosine coefficient is

$$\begin{aligned} g_{1kr}^{(c)} =\sum _{p=1}^2 {g_{1kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{1kr}^{(c)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(118)

where

$$\begin{aligned} g_{1kr}^{(c)} (1)= & {} 3\delta _{k+3N+1}^r \left( \frac{k\Omega }{m}\right) ({\dot{a}}_{20}^{(m)} )^{2}, \nonumber \\ g_{1kr}^{(c)} (2)= & {} \frac{3}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) B_{j/m} \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&-\,[\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} \nonumber \\&+\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{1kr}^{(c)} \left( i,j,l,1\right)= & {} 3[-\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} B_{l/m}\nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) C_{i/m} C_{j/m} ]\Delta _4 \left( i,j,k,l\right) , \nonumber \\ g_{1kr}^{(c)} \left( i,j,l,2\right)= & {} [\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) B_{j/m} B_{l/m}\nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) B_{i/m} B_{j/m} ]\Delta _3 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(119)

The second term for the cosine coefficient is

$$\begin{aligned} g_{2kr}^{(c)} =\sum _{p=1}^2 {g_{2kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{2kr}^{(c)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(120)

where

$$\begin{aligned} g_{2kr}^{(c)} (1)= & {} \delta _{k+N}^r \left( \frac{k\Omega }{m}\right) ({\dot{a}}_{20}^{(m)} )^{2}\nonumber \\&+\,2\delta _{k+3N+1}^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ g_{2kr}^{(c)} (2)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} \right. \nonumber \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) B_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&-\,\left[ \delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} \right. \nonumber \\&\left. +\delta _j^r \left( \frac{j\Omega }{m}\right) C_{i/m} \right] \Delta _2 \left( i,j,k\right) \} \nonumber \\&+\,\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) B_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} \right] \Delta _1 \left( i,j,k\right) \; \nonumber \\&-\,\left[ \delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{2kr}^{(c)} \left( i,j,l,1\right)= & {} \left[ -\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} P_{l/m}\right. \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} P_{l/m} \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) C_{i/m} C_{j/m} \right] \Delta _4 \left( i,j,k,l\right) , \nonumber \\ g_{2kr}^{(c)} \left( i,j,l,2\right)= & {} 2\left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} Q_{l/m} \right. \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} Q_{l/m} \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) B_{i/m} C_{j/m} \right] \Delta _5 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(121)

The third term for the cosine coefficient is

$$\begin{aligned} g_{3kr}^{(c)} =\sum _{p=1}^4 {g_{3kr}^{(c)} (p)} {+}\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{3kr}^{(c)} (i,j,l,q)}}}} \end{aligned}$$
(122)

where

$$\begin{aligned} g_{3kr}^{(c)} (1)= & {} 2\delta _{k+3N+1}^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{20}^{(m)} a_{20}^{(m)} \nonumber \\&+\,2\delta _{k+2N+1}^r {\dot{a}}_{20}^{(m)} B_{k/m} \nonumber \\&+\,\delta _{k+2N+1}^r ({\dot{a}}_{20}^{(m)} )^{2},\nonumber \\ g_{3kr}^{(c)} (2)= & {} \frac{1}{2}\delta _{k+2N+1}^r \sum _{i=1}^N \sum _{j=1}^N [B_{i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \nonumber \\&+\,C_{i/m} C_{j/m} \Delta _2 \left( i,j,k\right) ] , \nonumber \\ g_{3kr}^{(c)} (3)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) B_{j/m} \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&-\,[\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} \nonumber \\&+\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{3kr}^{(c)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+2N+1}^r B_{j/m} \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&+\,[\delta _{i+3N+1}^r C_{j/m} \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} ]\Delta _2 \left( i,j,k\right) \},\nonumber \end{aligned}$$
$$\begin{aligned} g_{3kr}^{(c)} \left( i,j,l,1\right)= & {} [\delta _{i+2N+1}^r B_{j/m} B_{l/m} \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} B_{j/m} ]\Delta _3 \left( i,j,k,l\right) , \nonumber \\ g_{3kr}^{(c)} \left( i,j,l,2\right)= & {} \;[\delta _{i+2N+1}^r C_{j/m} C_{l/m} \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} C_{l/m} \nonumber \\&-\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} C_{j/m} ]\Delta _5 \left( i,j,k,l\right) , \nonumber \\ g_{3kr}^{(c)} \left( i,j,l,3\right)= & {} 2[\delta _{i+3N+1}^r B_{j/m} C_{l/m} \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} C_{l/m} \nonumber \\&-\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} B_{j/m} ]\Delta _6 \left( i,j,k,l\right) \}.\nonumber \\ \end{aligned}$$
(123)

The fourth term for the cosine coefficient is

$$\begin{aligned} g_{4kr}^{(c)} =\sum _{p=1}^3 {g_{4kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 \sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{4kr}^{(c)} \left( i,j,l,q\right) }}}\nonumber \\ \end{aligned}$$
(124)

where

$$\begin{aligned} g_{4kr}^{(c)} (1)= & {} 2\delta _{k+N}^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} \nonumber \\&+\,\delta _{k+3N+1}^r \left( \frac{k\Omega }{m}\right) \left( {\dot{a}}_{10}^{(m)} \right) ^{2}, \nonumber \\ g_{4kr}^{(c)} (2)= & {} \frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+N}^r \left( \frac{i\Omega }{m}\right) P_{j/m} \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) P_{i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&-\,[\delta _i^r \left( \frac{i\Omega }{m}\right) Q_{j/m}\nonumber \\&+\,\delta _j^r \left( \frac{j\Omega }{m}\right) Q_{i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{4kr}^{(c)} (3)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) B_{i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&-\,[\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} \nonumber \\&+\,\delta _j^r \left( \frac{j\Omega }{m}\right) C_{i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{4kr}^{(c)} \left( i,j,l,1\right)= & {} [\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} P_{l/m} \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) B_{i/m} P_{l/m} \nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) B_{i/m} P_{j/m} ]\Delta _3 \left( i,j,k,l\right) , \nonumber \\ g_{4kr}^{(c)} \left( i,j,l,2\right)= & {} [\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} Q_{l/m}\nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) B_{i/m} Q_{l/m} \nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m}\right) B_{i/m} Q_{j/m} ]\Delta _5 \left( i,j,k,l\right) , \nonumber \\ g_{4kr}^{(c)} \left( i,j,l,3\right)= & {} [-\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} Q_{l/m} \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) C_{i/m} Q_{l/m} \nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m}\right) C_{i/m} P_{j/m} ]\Delta _6 \left( i,j,k,l\right) . \end{aligned}$$
(125)

The fifth term for the cosine coefficient is

$$\begin{aligned} g_{5kr}^{(c)} =\sum _{p=1}^4 {g_{5kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{5kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(126)

where

$$\begin{aligned} g_{5kr}^{(c)} (1)= & {} \delta _{2N+1}^r {\dot{a}}_{20}^{(m)} P_{k/m}\nonumber \\&+\,\delta _{k+N}^r \left( \frac{k\Omega }{m}\right) a_{20}^{(m)} {\dot{a}}_{20}^{(m)} +\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} B_{k/m}\nonumber \\&+\,\delta _{k+3N+1}^r \left( \frac{k\Omega }{m}\right) a_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ g_{5kr}^{(c)} (2)= & {} \frac{1}{2}\delta _{k+N}^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ g_{5kr}^{(c)} (3)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m}\nonumber \right. \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) B_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&-\,\left[ \delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{i/m} \right. \nonumber \\&\left. +\,\delta _j^r \left( \frac{j\Omega }{m}\right) C_{i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{5kr}^{(c)} (4)= & {} \delta _{k+2N+1}^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)}\nonumber \\&+\,\frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \bigg \{\left[ \delta _{i+2N+1}^r P_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r Q_{j/m} -\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,j,k\right) \bigg \}, \nonumber \\ g_{5kr}^{(c)} (5)= & {} \;\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \bigg \{\left[ \delta _{i+2N+1}^r B_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r C_{j/m} -\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,j,k\right) \bigg \}, \nonumber \end{aligned}$$
$$\begin{aligned} g_{5kr}^{(c)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r B_{j/m} P_{l/m} +\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} B_{j/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ g_{5kr}^{(c)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r C_{j/m} Q_{l/m} -\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} Q_{l/m}\right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} C_{j/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ g_{5kr}^{(c)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r B_{j/m} Q_{l/m} +\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} Q_{l/m} \right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) c_{2i/m} B_{j/m} \right] \Delta _6 \left( i,j,k,l\right) , \nonumber \\ g_{5kr}^{(c)} \left( i,j,l,4\right)= & {} \left[ \delta _{i+3N+1}^r C_{j/m} P_{l/m} -\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} C_{j/m} \right] \Delta _4 \left( i,j,k,l\right) \}. \end{aligned}$$
(127)

The sixth term for the cosine coefficient is

$$\begin{aligned} g_{6kr}^{(c)} =\sum _{p=1}^4 {g_{6kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 \sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{6kr}^{(c)} \left( i,j,l,q\right) }}}\nonumber \\ \end{aligned}$$
(128)

where

$$\begin{aligned} g_{6kr}^{(c)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} B_{k/m} +\delta _{k+3N+1}^r \left( \frac{k\Omega }{m}\right) \left( a_{20}^{(m)}\right) ^{2}\nonumber \\&+\,2\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} b_{2k/m}+2\delta _{k+2N+1}^r a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ g_{6kr}^{(c)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N [b_{2i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \nonumber \\&+\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) ] , \nonumber \\ g_{6kr}^{(c)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+2N+1}^r B_{j/m}\nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&+\,[\delta _{i+3N+1}^r Q_{j/m} \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{6kr}^{(c)} (4)= & {} \frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+2N+1}^r b_{2j/m} \nonumber \\&+\,\delta _{j+2N+1}^r b_{2i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&+\,[\delta _{i+3N+1}^r c_{2j/m} +\delta _{j+3N+1}^r c_{2i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \end{aligned}$$
$$\begin{aligned} g_{6kr}^{(c)} \left( i,j,l,1\right)= & {} [\delta _{i+2N+1}^r b_{2j/m} B_{l/m} +\delta _{j+2N+1}^r b_{2i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} b_{2j/m} ]\Delta _3 \left( i,j,k,l\right) , \nonumber \\ g_{6kr}^{(c)} \left( i,j,l,2\right)= & {} [\delta _{i+2N+1}^r c_{2j/m} C_{l/m} +\delta _{j+3N+1}^r b_{2i/m} C_{l/m} \nonumber \\&-\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} c_{2j/m} ]\Delta _5 \left( i,j,k,l\right) , \nonumber \\ g_{6kr}^{(c)} \left( i,j,l,3\right)= & {} [\delta _{i+3N+1}^r c_{2j/m} B_{l/m} +\delta _{j+3N+1}^r c_{2i/m} B_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} c_{2j/m} ]\Delta _4 \left( i,j,k,l\right) ].\nonumber \\ \end{aligned}$$
(129)

The seventh term for the cosine coefficient is

$$\begin{aligned} g_{7kr}^{(c)} =\sum _{p=1}^2 {g_{7kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{7kr}^{(c)} \left( i,j,l,q\right) }}}}\nonumber \\ \end{aligned}$$
(130)

where

$$\begin{aligned} g_{7kr}^{(c)} (1)= & {} 3\delta _{k+N}^r \left( \frac{k\Omega }{m}\right) \left( {\dot{a}}_{10}^{(m)} \right) { }^2 \nonumber \\ g_{7kr}^{(c)} (2)= & {} \frac{3}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \left[ \delta _{i+N}^r \left( \frac{i\Omega }{m}\right) P_{j/m}\right. \right. \nonumber \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) P_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&-\,[\delta _i^r \left( \frac{i\Omega }{m}\right) Q_{j/m}\nonumber \\&\left. +\,\delta _j^r \left( \frac{j\Omega }{m}\right) Q_{j/m} ]\Delta _2 \left( i,j,k\right) \right\} , \nonumber \end{aligned}$$
$$\begin{aligned} g_{7kr}^{(c)} \left( i,j,l,1\right)= & {} 3\left[ -\delta _i^r \left( \frac{i\Omega }{m}\right) Q_{j/m} P_{l/m} -\delta _j^r \left( \frac{j\Omega }{m}\right) Q_{i/m} P_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) Q_{i/m} Q_{j/m} \right] \Delta _4 \left( i,j,k,l\right) , \nonumber \\ g_{7kr}^{(c)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+N}^r \left( \frac{i\Omega }{m}\right) P_{j/m} P_{l/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) P_{i/m} P_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) P_{i/m} P_{j/m} \right] \Delta _3 \left( i,j,k,l\right) . \end{aligned}$$
(131)

The eighth term for the cosine coefficient is

$$\begin{aligned} g_{8kr}^{(c)} =\sum _{p=1}^3 {g_{8kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{8kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(132)

where

$$\begin{aligned} g_{8kr}^{(c)} (1)= & {} 2\delta _{k+N}^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{10}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ g_{8kr}^{(c)} (2)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+N}^r \left( \frac{i\Omega }{m}\right) P_{j/m}\nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) P_{i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&-\,[\delta _i^r \left( \frac{i\Omega }{m}\right) Q_{j/m} \nonumber \\&+\,\delta _j^r \left( \frac{j\Omega }{m}\right) Q_{i/m} ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{8kr}^{(c)} (3)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r P_{j/m} \right. \nonumber \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _1 \left( i,j,k\right) \;\; \nonumber \\&+\,\left[ \delta _{i+3N+1}^r Q_{j/m} \right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \end{aligned}$$
$$\begin{aligned} g_{8kr}^{(c)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r P_{j/m} P_{l/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} P_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r (\frac{l\Omega }{m})b_{2i/m} P_{j/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ g_{8kr}^{(c)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r Q_{j/m} Q_{l/m} -\delta _j^r \left( \frac{j\Omega }{m}\right) b_{2i/m} Q_{l/m}\right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} Q_{j/m} Q_{l/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ g_{8kr}^{(c)} \left( i,j,l,3\right)= & {} 2\left[ \delta _{i+3N+1}^r P_{j/m} Q_{l/m}\right. \nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} Q_{l/m}\nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) c_{2i/m} P_{j/m} \right] \Delta _6 \left( i,j,k,l\right) ]. \end{aligned}$$
(133)

The ninth term for the cosine coefficient is

$$\begin{aligned} g_{9kr}^{(c)} =\sum _{p=1}^4 {g_{9kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{9kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(134)

where

$$\begin{aligned} g_{9kr}^{(c)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} P_{k/m} +\delta _{k+N}^r \big (\frac{k\Omega }{m}\big )\big (a_{20}^{(m)}\big )^{2}\nonumber \\&+\,2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} b_{2k/m} +2\delta _{k+2N+1}^r {\dot{a}}_{10}^{(m)} a_{20}^{(m)} , \nonumber \\ g_{9kr}^{(c)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&+\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) , \nonumber \\ g_{9kr}^{(c)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r P_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r Q_{j/m} -\delta _j^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \\ g_{9kr}^{(c)} (4)= & {} \frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r b_{2j/m} \right. \nonumber \\&\left. +\,\delta _{j+2N+1}^r b_{2j/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r c_{2j/m} +\delta _{j+3N+1}^r c_{2i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \end{aligned}$$
$$\begin{aligned} g_{9kr}^{(c)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r b_{2j/m} P_{l/m} +\delta _{j+2N+1}^r b_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} b_{2j/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ g_{9kr}^{(c)} \left( i,j,l,2\right)= & {} 2\left[ \delta _{i+2N+1}^r c_{2j/m} Q_{l/m} +\delta _{j+3N+1}^r b_{2i/m} Q_{l/m}\right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} c_{2j/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ g_{9kr}^{(c)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r c_{2j/m} P_{l/m} +\delta _{j+3N+1}^r c_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} c_{2j/m} \right] \Delta _4 \left( i,j,k,l\right) \}.\nonumber \\ \end{aligned}$$
(135)

The tenth term for the cosine coefficient is

$$\begin{aligned} g_{10kr}^{(c)} =\sum _{p=1}^3 {g_{10kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{10kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(136)

where

$$\begin{aligned} g_{10kr}^{(c)} (1)= & {} 6\delta _{2N+1}^r a_{20}^{(m)} b_{2k/m} +3\delta _{k+2N+1}^r \big (a_{20}^{(m)} \big )^{2}, \nonumber \\ g_{10kr}^{(c)} (2)= & {} \frac{3}{2}\delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} \Delta _3 \left( i,j,k\right) \right] , \nonumber \\ g_{10kr}^{(c)} (3)= & {} \frac{3}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r b_{2j/m} \right. \nonumber \\&\left. +\,\delta _{j+2N+1}^r b_{2i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r c_{2j/m} \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r c_{2i/m} \right] \Delta _3 \left( i,j,k\right) \}, \nonumber \end{aligned}$$
$$\begin{aligned} g_{10kr}^{(c)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+3N+1}^r c_{2j/m} b_{2l/m}\right. \nonumber \\&+\delta _{j+3N+1}^r c_{2i/m} b_{2l/m}\nonumber \\&\left. +\,\delta _{l+2N+1}^r c_{2i/m} c_{2j/m} \right] \Delta _4 \left( i,j,k,l\right) , \nonumber \\ g_{10kr}^{(c)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r b_{2j/m} b_{2l/m} \right. \nonumber \\&\left. +\,\delta _{j+2N+1}^r b_{2i/m} b_{2l/m}\right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r b_{2i/m} b_{2j/m} \right] \Delta _3 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(137)

The eleventh term for the cosine coefficient is

$$\begin{aligned} g_{11kr}^{(c)} =\sum _{p=1}^3 {g_{11kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{11kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(138)

where

$$\begin{aligned} g_{11kr}^{(c)} (1)= & {} 6\delta _0^r a_{10}^{(m)} b_{1k/m} +3\delta _k^r \big (a_{10}^{(m)} \big )^{2}, \nonumber \\ g_{11kr}^{(c)} (2)= & {} \frac{3}{2}\delta _0^r \sum _{i=1}^N \sum _{j=1}^N [b_{1i/m} b_{1j/m} \Delta _1 \left( i,j,k\right) \nonumber \\&+\,c_{1i/m} c_{1j/m} \Delta _3 \left( i,j,k\right) ] , \nonumber \\ g_{11kr}^{(c)} (3)= & {} \frac{3}{2}a_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{[\delta _{i+N}^r b_{1j/m} \nonumber \\&+\,\delta _{j+N}^r b_{1i/m} ]\Delta _1 \left( i,j,k\right) \nonumber \\&+\,[\delta _{i+N}^r c_{1j/m} +\,\delta _{j+N}^r c_{1i/m} ]\Delta _3 \left( i,j,k\right) \}, \nonumber \end{aligned}$$
$$\begin{aligned} g_{11kr}^{(c)} \left( i,j,l,1\right)= & {} 3[\delta _{i+N}^r c_{1j/m} b_{1l/m} +\,\delta _{j+N}^r c_{1i/m} b_{1l/m} \nonumber \\&+\,\delta _{l+N}^r c_{1i/m} c_{1j/m} ]\Delta _4 \left( i,j,k,l\right) , \nonumber \\ g_{11kr}^{(c)} \left( i,j,l,2\right)= & {} [\delta _{i+N}^r b_{1j/m} b_{1l/m} +\,\delta _{j+N}^r b_{1i/m} b_{1l/m}\nonumber \\&+\,\delta _{l+N}^r b_{1i/m} b_{1j/m} ]\Delta _3 \left( i,j,k,l\right) . \end{aligned}$$
(139)

For derivatives for nonlinear sine terms, the first term for the sine coefficient is

$$\begin{aligned} g_{1kr}^{(s)} =\sum _{p=1}^2 {g_{1kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{1kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(140)

where

$$\begin{aligned} g_{1kr}^{(s)} (1)= & {} -3\delta _{k+2N+1}^r \left( \frac{k\Omega }{m}\right) \big ({\dot{a}}_{20}^{(m)} \big )^{2}, \nonumber \\ g_{1kr}^{(s)} (2)= & {} 3{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m}\right. \nonumber \\&\left. -\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} \right] \Delta _2 \left( k,j,i\right) ,\nonumber \\ g_{1kr}^{(s)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} B_{l/m} \right. \nonumber \\&\left. -\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} B_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) B_{i/m} C_{j/m} \right] \Delta _7 \left( i,j,k,l\right) ,\nonumber \\ \nonumber \\ g_{1kr}^{(s)} \left( i,j,l,2\right)= & {} -\left[ \delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m} C_{l/m}\right. \nonumber \\&+\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) C_{i/m} C_{l/m} \nonumber \\&\left. +\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) C_{i/m} C_{j/m} \right] \Delta _8 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(141)

The second term for the sine coefficient is

$$\begin{aligned} g_{2kr}^{(s)} =\sum _{p=1}^3 {g_{2kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{2kr}^{(s)} \left( i,j,l,1\right) } } } \end{aligned}$$
(142)

where

$$\begin{aligned} g_{2kr}^{(s)} (1)= & {} -\delta _k^r \left( \frac{k\Omega }{m}\right) \big ({\dot{a}}_{20}^{(m)} \big )^{2}\nonumber \\&-\,2\delta _{k+2N+1}^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} \nonumber \\ g_{2kr}^{(s)} (2)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\big [B_{i/m} Q_{j/m} \nonumber \\&+B_{i/m} Q_{j/m} \big ]\Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ C_{i/m} P_{j/m} +C_{i/m} P_{j/m} \right] \Delta _2 \left( i,k,j\right) \} \nonumber \\ g_{2kr}^{(s)} (3)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} \Delta _2 \left( k,j,i\right) } } \; \nonumber \end{aligned}$$
$$\begin{aligned} g_{2kr}^{(s)} \left( i,j,l,1\right)= & {} B_{i/m} B_{j/m} Q_{l/m} \Delta _9 \left( i,j,k,l\right) \nonumber \\&+\,C_{i/m} C_{j/m} Q_{l/m} \Delta _8 \left( i,j,k,l\right) \nonumber \\&+\,2B_{i/m} C_{j/m} P_{l/m} \Delta _7 \left( i,j,k,l\right) \end{aligned}$$
(143)

The third term for the sine coefficient is

$$\begin{aligned} g_{3kr}^{(s)} =\sum _{p=1}^4 {g_{3kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{3kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(144)

where

$$\begin{aligned} g_{3kr}^{(s)} (1)= & {} 2{\dot{a}}_{20}^{(m)} \delta _{2N+1}^r C_{k/m} \nonumber \\&-\,2\delta _{k+2N+1}^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{20}^{(m)} a_{20}^{(m)} \nonumber \\&+\,\big ({\dot{a}}_{20}^{(m)} \big )^{2}\delta _{k+3N+1}^r , \nonumber \\ g_{3kr}^{(s)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} } \Delta _2 \left( k,j,i\right) } , \nonumber \\ g_{3kr}^{(s)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) C_{j/m}\right. \nonumber \\&\left. -\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) B_{i/m} \right] \Delta _2 \left( k,j,i\right) , \nonumber \\ g_{3kr}^{(s)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Bigg \{\left[ \delta _{i+2N+1}^r C_{j/m} \right. \nonumber \\&\left. -\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ \delta _{j+3N+1}^r B_{j/m} \right. \nonumber \\&\left. \left. +\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,k,j\right) \right\} , \nonumber \end{aligned}$$
$$\begin{aligned} g_{3kr}^{(s)} \left( i,j,l,1\right)= & {} 2\left[ \delta _{i+2N+1}^r B_{j/m} C_{l/m} \right. \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} C_{l/m} \nonumber \\&\left. -\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} B_{j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ g_{3kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{j+3N+1}^r B_{j/m} B_{l/m}\right. \nonumber \\&+\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} B_{l/m} \nonumber \\&\left. +\,\delta _{l+3N+1}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} B_{j/m} \right] \Delta _{10} \left( i,j,k,l\right) , \nonumber \\ g_{3kr}^{(s)} \left( i,j,l,3\right)= & {} \left[ \delta _{j+3N+1}^r C_{j/m} C_{l/m}\right. \nonumber \\&-\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} C_{l/m} \nonumber \\&\left. -\,\delta _{l+2N+1}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} C_{j/m} \right] \Delta _8 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(145)

The fourth term for the sine coefficient is

$$\begin{aligned} g_{4kr}^{(s)} =\sum _{p=1}^3 {g_{4kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{4kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(146)

where

$$\begin{aligned} g_{4kr}^{(s)} (1)= & {} -2\delta _k^r \Big (\frac{k\Omega }{m}\Big ){\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)}\nonumber \\&-\,\delta _{k+2N+1}^r \Big (\frac{k\Omega }{m}\Big )\left( {\dot{a}}_{10}^{(m)} \right) ^{2} \nonumber \\ g_{4kr}^{(s)} (2)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Big [\delta _{i+N}^r \left( \frac{i\Omega }{m}\right) Q_{j/m}\nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) P_{i/m} \Big ]\Delta _2 \left( k,j,i\right) , \nonumber \\ g_{4kr}^{(s)} (3)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \Big [\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} \right. \nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) B_{i/m} \Big ]\Delta _2 \left( k,j,i\right) \nonumber \\&+\,\Big [-\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} \nonumber \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) C_{i/m} \Big ]\Delta _2 \left( i,k,j\right) \right\} , \nonumber \end{aligned}$$
$$\begin{aligned} g_{4kr}^{(s)} \left( i,j,l,1\right)= & {} 2\Big [\delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} Q_{l/m}\nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) B_{i/m} Q_{l/m}\nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m}\right) B_{i/m} P_{j/m} \Big ]\Delta _9 \left( i,j,k,l\right) , \nonumber \\ g_{4kr}^{(s)} \left( i,j,l,2\right)= & {} \Big [-\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} P_{l/m}\nonumber \\&+\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) C_{i/m} P_{l/m}\nonumber \\&+\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) C_{i/m} P_{j/m} \Big ]\Delta _{10} \left( i,j,k,l\right) , \nonumber \\ g_{4kr}^{(s)} \left( i,j,l,3\right)= & {} \Big [-\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} Q_{l/m} \nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) C_{i/m} Q_{l/m} \nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m}\right) C_{i/m} Q_{j/m} \Big ]\Delta _8 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(147)

The fifth term for the sine coefficient is

$$\begin{aligned} g_{5kr}^{(s)} =\sum _{p=1}^6 {g_{5kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{5kr}^{(s)} \left( i,j,l,q\right) } } } } \end{aligned}$$
(148)

where

$$\begin{aligned} g_{5kr}^{(s)} (1)= & {} \delta _{2N+1}^r {\dot{a}}_{20}^{(m)} Q_{k/m} \nonumber \\&-\,\delta _k^r \left( \frac{k\Omega }{m}\right) a_{20}^{(m)} {\dot{a}}_{20}^{(m)} +\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} C_{k/m} \nonumber \\&-\,\delta _{k+2N+1}^r \left( \frac{k\Omega }{m}\right) a_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ g_{5kr}^{(s)} (2)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} Q_{j/m} +B_{i/m} Q_{j/m} \right] \nonumber \\&\Delta _2 \left( k,j,i\right) , \nonumber \\ g_{5kr}^{(s)} (3)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N} \left[ \delta _{i+3N+1}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) C_{i/m} \right] \nonumber \\&\times \, \Delta _2 \left( i,k,j\right) +\left[ -\delta _{i+2N+1}^r \left( \frac{i\Omega }{m}\right) P_{j/m} \right. \nonumber \\&\left. +\,\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) C_{i/m} \right] \Delta _2 \left( i,k,j\right) \}, \nonumber \\ g_{5kr}^{(s)} (4)= & {} {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} \delta _{i+3N+1}^r , \nonumber \\ g_{5kr}^{(s)} (5)= & {} \frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r Q_{j/m} \right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) b_{2j/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r P_{j/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,k,j\right) \}, \nonumber \\ g_{5kr}^{(s)} (6)= & {} \frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r C_{j/m} \right. \nonumber \\&\left. -\,\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r B_{j/m} +\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,k,j\right) \}, \nonumber \\ g_{5kr}^{(s)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r B_{j/m} Q_{l/m} \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} Q_{l/m}\right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} B_{j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ g_{5kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r C_{j/m} P_{l/m} -\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} C_{j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ g_{5kr}^{(s)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r B_{j/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} B_{j/m} \right] \Delta _{10} \left( i,j,k,l\right) , \nonumber \\ g_{5kr}^{(s)} \left( i,j,l,4\right)= & {} \left[ \delta _{i+3N+1}^r C_{j/m} Q_{l/m}-\delta _{j+2N+1}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} Q_{l/m} \right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) c_{2i/m} C_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(149)

The sixth term for the sine coefficient is

$$\begin{aligned} g_{6kr}^{(s)} =\sum _{p=1}^4 {g_{6kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{6kr}^{(s)} \left( i,j,l,q\right) } } } } \end{aligned}$$
(150)

where

$$\begin{aligned} g_{6kr}^{(s)} (1)= & {} 2\delta _{2N+1} a_{20}^{(m)} C_{k/m} -\delta _{k+2N+1} \left( \frac{k\Omega }{m}\right) \left( a_{20}^{(m)} \right) ^{2} \nonumber \\&+\,2\delta _{2N+1} {\dot{a}}_{20}^{(m)} c_{2k/m} +2\delta _{k+3N+1} a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ g_{6kr}^{(s)} (2)= & {} \delta _{2N+1} \sum _{i=1}^N \sum _{j=1}^N \left[ c_{2i/m} B_{j/m} \Delta _2 \left( i,k,j\right) \right. \nonumber \\&\left. +\,b_{2i/m} C_{j/m} \Delta _2 \left( k,j,i\right) \right] , \nonumber \\ g_{6kr}^{(s)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+3N+1} B_{j/m} \right. \nonumber \\&\left. +\,\delta _{j+3N+1} \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,k,j\right) \nonumber \\&+\,\left[ \delta _{i+2N+1} C_{j/m} -\delta _{j+2N+1} \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _2 \left( k,j,i\right) \}, \nonumber \\ g_{6kr}^{(s)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+3N+1} b_{2j/m} +\delta _{j+2N+1} c_{2i/m} \right] \Delta _2 \left( i,k,j\right) ,\; \nonumber \end{aligned}$$
$$\begin{aligned} g_{6kr}^{(s)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1} b_{2j/m} C_{l/m} +\delta _{j+2N+1} b_{2i/m} C_{l/m} \right. \nonumber \\&\left. -\,\delta _{l+2N+1} \left( \frac{l\Omega }{m}\right) b_{2i/m} b_{2j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ g_{6kr}^{(s)} \left( i,j,l,2\right)= & {} 2\left[ \delta _{i+2N+1} c_{2j/m} B_{l/m} +\delta _{j+3N+1} b_{2i/m} B_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+3N+1} \left( \frac{l\Omega }{m}\right) b_{2i/m} c_{2j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ g_{6kr}^{(s)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1} c_{2j/m} C_{l/m} +\delta _{j+3N+1} c_{2i/m} C_{l/m} \right. \nonumber \\&\left. -\,\delta _{l+2N+1} \left( \frac{l\Omega }{m}\right) c_{2i/m} c_{2j/m} \right] \Delta _9 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(151)

The seventh term for the sine coefficient is

$$\begin{aligned} g_{7kr}^{(s)} =\sum _{p=1}^2 {g_{7kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{7kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(152)

where

$$\begin{aligned} g_{7kr}^{(s)} (1)= & {} -3\delta _k^r \left( \frac{k\Omega }{m}\right) \left( {\dot{a}}_{10}^{(m)} \right) ^{2}, \nonumber \\ g_{7kr}^{(s)} (2)= & {} 3{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+N}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} \right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) P_{i/m} \right] \Delta _2 \left( k,j,i\right) ,\nonumber \\ g_{7kr}^{(s)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+N}^r \left( \frac{i\Omega }{m}\right) Q_{j/m} P_{l/m}\right. \nonumber \\&-\,\delta _j^r \left( \frac{j\Omega }{m}\right) P_{i/m} P_{l/m}\nonumber \\&-\,\delta _l^r \left( \frac{l\Omega }{m})P_{i/m} Q_{j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ g_{7kr}^{(s)} \left( i,j,l,2\right)= & {} -\left[ \delta _i^r \left( \frac{i\Omega }{m}\right) Q_{j/m} Q_{l/m} +\delta _j^r \left( \frac{j\Omega }{m}\right) Q_{i/m} Q_{l/m} \right. \nonumber \\&\left. +\,\delta _l^r \left( \frac{l\Omega }{m}\right) Q_{i/m} Q_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(153)

The eighth term for the sine coefficient is

$$\begin{aligned} g_{8kr}^{(s)} =\sum _{p=1}^5 {g_{8kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{8kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(154)

where

$$\begin{aligned} g_{8kr}^{(s)} (1)= & {} 2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} Q_{k/m} -2\delta _k^r \left( \frac{k\Omega }{m}\right) {\dot{a}}_{10}^{(m)} a_{20}^{(m)} , \nonumber \\ g_{8kr}^{(s)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N {\sum _{j=1}^N {P_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) } } , \nonumber \\ g_{8kr}^{(s)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+N}^r \left( \frac{i\Omega }{m}\right) Q_{j/m}\right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) P_{i/m} \right] \Delta _2 \left( k,j,i\right) , \nonumber \\ g_{8kr}^{(s)} (4)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+2N+1}^r Q_{j/m} \right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) b_{2j/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ \delta _{j+3N+1}^r P_{j/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) c_{2i/m}\right] \Delta _2 \left( i,k,j\right) , \nonumber \\ g_{8kr}^{(s)} (5)= & {} \big ({\dot{a}}_{10}^{(m)} \big )^{2}\delta _{k+2N+1}^r , \nonumber \end{aligned}$$
$$\begin{aligned} g_{8kr}^{(s)} \left( i,j,l,1\right)= & {} 2\left[ \delta _{j+2N+1}^r P_{j/m} Q_{l/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) b_{2i/m} Q_{l/m} \right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} P_{j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ g_{8kr}^{(s)} \left( i,j,l,2\right)= & {} \;\left[ \delta _{i+3N+1}^r P_{j/m} P_{l/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} P_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) c_{2i/m} P_{j/m} \right] \Delta _{10} \left( i,j,k,l\right) , \nonumber \\ g_{8kr}^{(s)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r Q_{j/m} Q_{l/m} -\delta _j^r \left( \frac{j\Omega }{m}\right) c_{2i/m} Q_{l/m}\right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) c_{2i/m} Q_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(155)

The ninth term for the sine coefficient is

$$\begin{aligned} g_{9kr}^{(s)} =\sum _{p=1}^4 {g_{9kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{9kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(156)

where

$$\begin{aligned} g_{9kr}^{(s)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} Q_{k/m} -\delta _k^r \left( \frac{k\Omega }{m}\right) \left( a_{20}^{(m)}\right) ^{2}\nonumber \\&+\,2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} c_{2k/m}+\,2\delta _{k+3N+1}^r {\dot{a}}_{10}^{(m)} a_{20}^{(m)} , \nonumber \\ g_{9kr}^{(s)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\,c_{2i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ g_{9kr}^{(s)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r Q_{j/m} \right. \nonumber \\&\left. -\,\delta _j^r \left( \frac{j\Omega }{m}\right) b_{2i/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r P_{j/m} +\delta _{j+N}^r \left( \frac{j\Omega }{m}\right) c_{2i/m} \right] \Delta _2 \left( i,k,j\right) \}, \nonumber \\ g_{9kr}^{(s)} (4)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+2N+1}^r c_{2j/m} \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r b_{2i/m} \right] \Delta _2 \left( k,j,i\right) , \nonumber \\ g_{9kr}^{(s)} \left( i,j,l,1\right)= & {} 2\left[ \delta _{i+2N+1}^r c_{2j/m} P_{l/m} +\delta _{j+3N+1}^r b_{2i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r \left( \frac{l\Omega }{m}\right) b_{2i/m} c_{2j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ g_{9kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r b_{2j/m} Q_{l/m} +\delta _{j+2N+1}^r b_{2i/m} Q_{l/m} \right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) b_{2i/m} b_{2j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ g_{9kr}^{(s)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r c_{2j/m} Q_{l/m} +\delta _{j+3N+1}^r c_{2i/m} Q_{l/m} \right. \nonumber \\&\left. -\,\delta _l^r \left( \frac{l\Omega }{m}\right) c_{2i/m} c_{2j/m} \right] \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(157)

The tenth term for the sine coefficient is

$$\begin{aligned} g_{10kr}^{(s)} =\sum _{p=1}^3 {g_{10kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{10kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(158)

where

$$\begin{aligned} g_{10kr}^{(s)} (1)= & {} 6\delta _{2N+1}^r a_{20}^{(m)} c_{2k/m} \nonumber \\&+\,3\delta _{k+3N+1}^r \big (a_{20}^{(m)}\big )^{2}, \nonumber \\ g_{10kr}^{(s)} (2)= & {} 3\delta _{2N+1}^r \sum _{i=1}^N {\sum _{j=1}^N {b_{2i/m} c_{2j/m} } \Delta _2 \left( k,j,i\right) } , \nonumber \\ g_{10kr}^{(s)} (3)= & {} 3a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+2N+1}^r c_{2j/m} \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r b_{2i/m} \right] \Delta _2 \left( k,j,i\right) , \nonumber \end{aligned}$$
$$\begin{aligned} g_{10kr}^{(s)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+2N+1}^r c_{2j/m} b_{2l/m} \right. \nonumber \\&+\,\delta _{j+3N+1}^r b_{2i/m} b_{2l/m} \nonumber \\&\left. +\,\delta _{l+2N+1}^r b_{2i/m} c_{2j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ g_{10kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+3N+1}^r c_{2j/m} c_{2l/m}\right. \nonumber \\&+\delta _{j+3N+1}^r c_{2i/m} c_{2l/m} \nonumber \\&\left. +\,\delta _{l+3N+1}^r c_{2i/m} c_{2j/m} \right] \Delta _8 (i,j,k,l). \end{aligned}$$
(159)

The eleventh term for the sine coefficient is

$$\begin{aligned} g_{11kr}^{(s)} =\sum _{p=1}^3 {g_{11kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {g_{11kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(160)

where

$$\begin{aligned} g_{11kr}^{(s)} (1)= & {} 6\delta _0^r a_{10}^{(m)} c_{1k/m}+\,3\delta _{k+N}^r \left( a_{10}^{(m)} \right) ^{2}, \nonumber \\ g_{11kr}^{(s)} (2)= & {} 3a_{10}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {b_{1i/m} c_{1j/m} } \Delta _2 \left( k,j,i\right) } , \nonumber \\ g_{11kr}^{(s)} (3)= & {} 3\delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _i^r b_{1i/m} c_{1j/m} \right. \nonumber \\&\left. +\,\delta _{i+N}^r b_{1i/m} c_{1j/m} \right] \Delta _2 \left( k,j,i\right) , \nonumber \\ g_{11kr}^{(s)} \left( i,j,l,1\right)= & {} 3\left[ \delta _i^r c_{1j/m} b_{1l/m} +\delta _{j+N}^r b_{1i/m} b_{1l/m} \right. \nonumber \\&\left. +\,\delta _l^r b_{1i/m} c_{1j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ g_{11kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+N}^r c_{1j/m} c_{1l/m} +\delta _{j+N}^r c_{1i/m} c_{1l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r c_{1i/m} c_{1j/m} \right] \Delta _8 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(161)

1.1 Derivatives of coefficients with velocity

For derivatives of \(f_\lambda ^{(0)} \) (\(\lambda =1,2,\ldots ,11)\) with \({\dot{z}}_r \), the first term of the constant is

$$\begin{aligned} h_{1r}^{(0)} =\sum _{p=1}^3 {h_{1r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{1r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(162)

where

$$\begin{aligned} h_{1r}^{(0)} (1)= & {} 3\delta _{2N+1}^r \big ({\dot{a}}_{20}^{(m)} \big )^{2} \nonumber \\ h_{1r}^{(0)} (2)= & {} \frac{3}{2}\delta _{2N+1}^r \sum _{i=1}^N {\big (B_{i/m}^2 +C_{i/m}^2 \big )} \nonumber \\ h_{1r}^{(0)} (3)= & {} 3{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( \delta _{i+2N+1}^r B_{i/m}+\,\delta _{i+3N+1}^r C_{i/m} \right) \nonumber \\ h_{1r}^{(0)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+3N+1}^r C_{j/m} B_{l/m} +\delta _{j+3N+1}^r C_{i/m} B_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r C_{i/m} C_{j/m} \right] \Delta _2 \left( i,j,l\right) , \nonumber \\ h_{1r}^{(0)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r B_{j/m} B_{l/m} +\delta _{j+2N+1}^r B_{i/m} B_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r B_{i/m} B_{j/m} \right] \Delta _1 \left( i,j,l\right) . \end{aligned}$$
(163)

The second term of the constant is

$$\begin{aligned} h_{2r}^{(0)} =\sum _{p=1}^5 {h_{2r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{2r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(164)

where

$$\begin{aligned} h_{2r}^{(0)} (1)= & {} 2\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} +\delta _0^r \big ({\dot{a}}_{20}^{(m)}\big )^{2}, \nonumber \\ h_{2r}^{(0)} (2)= & {} \delta _{2N+1}^r \sum _{i=1}^N {\left( B_{i/m} P_{i/m} +C_{i/m} Q_{i/m}\right) } , \nonumber \\ h_{2r}^{(0)} (3)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \left( \delta _{i+2N+1}^r P_{i/m} +\delta _i^r B_{i/m} \right. \nonumber \\&\left. +\,\delta _{i+3N+1}^r Q_{i/m} +\delta _{i+N}^r C_{i/m} \right) , \nonumber \\ h_{2r}^{(0)} (4)= & {} \frac{1}{2}\delta _0^r \sum _{i=1}^N {(B_{i/m}^2 +C_{i/m}^2 )} , \nonumber \\ h_{2r}^{(0)} (5)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \left( \delta _{i+2N+1}^r B_{i/m}+\,\delta _{i+3N+1}^r C_{i/m} \right) , \nonumber \end{aligned}$$
$$\begin{aligned} h_{2r}^{(0)} \left( i,j,l,1\right)= & {} \Big [\delta _{i+2N+1}^r B_{j/m} P_{l/m}+\,\delta _{j+2N+1}^r B_{i/m} P_{l/m}\nonumber \\&+\,\delta _l^r B_{i/m} B_{j/m} \Big ]\Delta _1 \left( i,j,l\right) , \nonumber \\ h_{2r}^{(0)} \left( i,j,l,2\right)= & {} \;\Big [\delta _{i+3N+1}^r C_{j/m} P_{l/m} +\delta _{j+3N+1}^r C_{i/m} P_{l/m} \nonumber \\&+\,\delta _l^r C_{i/m} C_{j/m} \Big ]\Delta _2 \left( i,j,l\right) , \nonumber \\ h_{2r}^{(0)} \left( i,j,l,3\right)= & {} 2\Big [\delta _{i+2N+1}^r C_{j/m} Q_{l/m}+\,\delta _{j+3N+1}^r B_{i/m} Q_{l/m} \nonumber \\&+\delta _{l+N}^r B_{i/m} C_{j/m} \Big ]\Delta _2 \left( l,j,i\right) \}. \end{aligned}$$
(165)

The third term of the constant is

$$\begin{aligned} h_{3r}^{(0)} =\sum _{p=1}^4 {h_{3r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{3r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(166)

where

$$\begin{aligned} h_{3r}^{(0)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ h_{3r}^{(0)} (2)= & {} a_{10}^{(m)} \sum _{i=1}^N {(\delta _{i+2N+1}^r B_{i/m} +} \delta _{i+3N+1}^r C_{i/m} ), \nonumber \\ h_{3r}^{(0)} (3)= & {} \delta _0^r \sum _{i=1}^N {\left( b_{2i/m} B_{i/m} +c_{2i/m} C_{i/m} \right) } , \nonumber \\ h_{3r}^{(0)} (4)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \left( \delta _{i+2N+1}^r b_{2i/m} \right. \nonumber \\&\left. +\,\delta _{i+3N+1}^r c_{2i/m} \right) , \nonumber \\ h_{3r}^{(0)} \left( i,j,l,1\right)= & {} \Big [\delta _{j+2N+1}^r b_{2i/m} B_{l/m} \nonumber \\&+\,\delta _{l+2N+1}^r b_{2i/m} B_{j/m} \Big ]\Delta _2 \left( i,j,l\right) , \nonumber \\ h_{3r}^{(0)} \left( i,j,l,2\right)= & {} \Big [\delta _{j+3N+1}^r b_{2i/m} C_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r b_{2i/m} C_{j/m} \Big ]\Delta _2 \left( l,j,i\right) , \nonumber \\ h_{3r}^{(0)} \left( i,j,l,3\right)= & {} 2\Big [\delta _{j+2N+1}^r c_{2i/m} C_{l/m} \nonumber \\&+\,\delta _{l+3N+1}^r c_{2i/m} B_{j/m} \Big ]\Delta _2 \left( i,l,j\right) . \end{aligned}$$
(167)

The fourth term of the constant is

$$\begin{aligned} h_{4r}^{(0)} =\sum _{p=1}^4 {h_{4r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^4 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{4r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(168)

where

$$\begin{aligned} h_{4r}^{(0)} (1)= & {} \delta _{2N+1}^r \big ({\dot{a}}_{10}^{(m)} \big )^{2}+2\delta _0^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ h_{4r}^{(0)} (2)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N {(P_{i/m}^2 +Q_{i/m}^2 )} , \nonumber \\ h_{4r}^{(0)} (3)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N {(\delta _i^r P_{i/m} +\delta _{i+N}^r Q_{i/m} )} , \nonumber \\ h_{4r}^{(0)} (4)= & {} \delta _0^r \sum _{i=1}^N {\left( B_{i/m} P_{i/m} +C_{i/m} Q_{i/m}\right) } , \nonumber \\ h_{4r}^{(0)} (5)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \left[ \delta _{i+2N+1}^r P_{i/m} +\delta _i^r B_{i/m} \right. \nonumber \\&+\,\delta _{i+3N+1}^r Q_{i/m} +\delta _{i+N}^r C_{i/m}) , \nonumber \\ h_{4r}^{(0)} \left( i,j,l,1\right)= & {} \Big [\delta _{i+2N+1}^r P_{j/m} P_{l/m}+\,\delta _j^r B_{i/m} P_{l/m} \nonumber \\&+\,\delta _l^r B_{i/m} P_{j/m} \Big ]\Delta _1 \left( i,j,l\right) , \nonumber \\ h_{4r}^{(0)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r Q_{j/m} Q_{l/m} +\delta _{j+N}^r B_{i/m} Q_{l/m} \right. \nonumber \\&\left. +\delta _{l+N}^r B_{i/m} Q_{j/m} \right] \Delta _2 \left( l,j,i\right) , \nonumber \\ h_{4r}^{(0)} \left( i,j,l,3\right)= & {} 2\left[ \delta _{i+3N+1}^r P_{j/m} Q_{l/m} +\delta _j^r C_{i/m} Q_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r C_{i/m} P_{j/m} \right] \Delta _2 \left( i,l,j\right) . \end{aligned}$$
(169)

The fifth term of the constant is

$$\begin{aligned} h_{5r}^{(0)} =\sum _{p=1}^5 {h_{5r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{5r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(170)

where

$$\begin{aligned} h_{5r}^{(0)} (1)= & {} \delta _{2N+1}^r a_{20}^{(m)} {\dot{a}}_{10}^{(m)} \nonumber \\&+\,\delta _0^r a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ h_{5r}^{(0)} (2)= & {} \frac{1}{2}\sum _{i=1}^N a_{20}^{(m)} \left( \delta _{i+2N+1}^r P_{i/m} +\delta _i^r B_{i/m} \right. \nonumber \\&\left. +\,\delta _{i+3N+1}^r Q_{i/m} +\delta _{i+N}^r C_{i/m} \right) , \nonumber \\ h_{5r}^{(0)} (3)= & {} \frac{1}{2}\sum _{i=1}^N \left[ \delta _0^r \left( b_{2i/m} B_{i/m} +c_{2i/m} C_{i/m} \right) \right. \nonumber \\&\left. +\,{\dot{a}}_{10}^{(m)} \left( \delta _{i+2N+1}^r b_{2i/m} +\delta _{i+3N+1}^r c_{2i/m} \right) \right] , \nonumber \\ h_{5r}^{(0)} (4)= & {} \frac{1}{2}\sum _{i=1}^N \left[ \delta _{2N+1}^r \left( b_{2i/m} P_{i/m} +c_{2i/m} Q_{i/m} \right) \right. \nonumber \\&\left. +\,{\dot{a}}_{20}^{(m)} (\delta _i^r b_{2i/m} +\delta _{i+N}^r c_{2i/m} )\right] , \nonumber \\ h_{5r}^{(0)} \left( i,j,l,1\right)= & {} b_{2i/m} \left[ \delta _{j+2N+1}^r P_{l/m} +\delta _l^r B_{j/m} \right] \Delta _1 \left( i,j,l\right) , \nonumber \\ h_{5r}^{(0)} \left( i,j,l,2\right)= & {} b_{2i/m} \left[ \delta _{j+3N+1}^r Q_{l/m} +\delta _{l+N}^r C_{j/m} \right] \Delta _2 \left( l,j,i\right) ,\nonumber \\ h_{5r}^{(0)} \left( i,j,l,3\right)= & {} c_{2i/m} \left[ \delta _{j+2N+1}^r Q_{l/m} +\delta _{l+N}^r B_{j/m} \right] \Delta _2 \left( i,l,j\right) , \nonumber \\ h_{5r}^{(0)} \left( i,j,l,4\right)= & {} c_{2i/m} \left[ \delta _{j+3N+1}^r P_{l/m} +\delta _l^r C_{j/m} \right] \Delta _2 \left( i,j,l\right) .\nonumber \\ \end{aligned}$$
(171)

The sixth term of the constant is

$$\begin{aligned} h_{6r}^{(0)} =\sum _{p=1}^3 {h_{6r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{6r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(172)

where

$$\begin{aligned} h_{6r}^{(0)} (1)= & {} \delta _{2N+1}^r \Big (a_{20}^{(m)}\Big )^{2}, \nonumber \\ h_{6r}^{(0)} (2)= & {} a_{20}^{(m)} \sum _{i=1}^N {\left( \delta _{i+2N+1}^r b_{2i/m} +\delta _{i+3N+1}^r c_{2i/m} \right) ,} \nonumber \\ h_{6r}^{(0)} (3)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N {\Big (b_{2i/m}^2 +c_{2i/m}^2 \Big )} , \nonumber \\ h_{6r}^{(0)} \left( i,j,l,1\right)= & {} \delta _{l+2N+1}^r b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,l\right) , \nonumber \\ h_{6r}^{(0)} \left( i,j,l,2\right)= & {} 2\delta _{l+3N+1}^r b_{2i/m} c_{2j/m} \Delta _2 \left( l,j,i\right) , \nonumber \\ h_{6r}^{(0)} \left( i,j,l,3\right)= & {} \delta _{l+2N+1}^r c_{2i/m} c_{2j/m} \Delta _2 \left( i,j,l\right) . \end{aligned}$$
(173)

The seventh term of the constant is

$$\begin{aligned} h_{7r}^{(0)} =\sum _{p=1}^3 {h_{7r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{7r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(174)

where

$$\begin{aligned} h_{7r}^{(0)} (1)= & {} 3\delta _0^r \big ({\dot{a}}_{10}^{(m)} \big )^{2}, \nonumber \\ h_{7r}^{(0)} (2)= & {} \frac{3}{2}\delta _0^r \sum _{i=1}^N {(P_{i/m}^2 +Q_{i/m}^2 )} , \nonumber \\ h_{7r}^{(0)} (3)= & {} 3{\dot{a}}_{10}^{(m)} \sum _{i=1}^N {(\delta _i^r P_{i/m} +\delta _{i+N}^r Q_{i/m} )} , \nonumber \\ h_{7r}^{(0)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+N}^r Q_{j/m} P_{l/m} +\delta _{j+N}^r Q_{i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _l^r Q_{i/m} Q_{j/m} \right] \Delta _2 \left( i,j,l\right) , \nonumber \\ h_{7r}^{(0)} \left( i,j,l,2\right)= & {} \left[ \delta _i^r P_{j/m} P_{l/m} +\delta _j^r P_{i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _l^r P_{i/m} P_{j/m} \right] \Delta _1 \left( i,j,l\right) . \end{aligned}$$
(175)

The eighth term of the constant is

$$\begin{aligned} h_{8r}^{(0)} =\sum _{p=1}^4 {h_{8r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{8r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(176)

where

$$\begin{aligned} h_{8r}^{(0)} (1)= & {} 2\delta _0^r {\dot{a}}_{10}^{(m)} a_{20}^{(m)} , \nonumber \\ h_{8r}^{(0)} (2)= & {} \sum _{i=1}^N {a_{20}^{(m)} (\delta _i^r P_{i/m} +\delta _{i+N}^r Q_{i/m} )} , \nonumber \\ h_{8r}^{(0)} (3)= & {} \sum _{i=1}^N {\delta _0^r \left( b_{2i/m} P_{i/m} +c_{2i/m} Q_{i/m} \right) } , \nonumber \\ h_{8r}^{(0)} (4)= & {} \sum _{i=1}^N {{\dot{a}}_{10}^{(m)} (\delta _i^r b_{(2)i/m} +\delta _{i+N}^r c_{(2)i/m} )} , \nonumber \\ h_{8r}^{(0)} \left( i,j,l,1\right)= & {} b_{2i/m} \left[ \delta _j^r P_{l/m} +\delta _l^r P_{j/m} \right] \Delta _1 \left( i,j,l\right) , \nonumber \\ h_{8r}^{(0)} \left( i,j,l,2\right)= & {} b_{2i/m} \left[ \delta _{j+N}^r Q_{l/m} +\delta _{l+N}^r Q_{j/m} \right] \Delta _2 \left( l,j,i\right) , \nonumber \\ h_{8r}^{(0)} \left( i,j,l,3\right)= & {} 2c_{2i/m} \left[ \delta _j^r Q_{l/m} +\delta _{j+N}^r P_{j/m} \right] \Delta _2 \left( i,l,j\right) ]. \nonumber \\ \end{aligned}$$
(177)

The ninth term of the constant is

$$\begin{aligned} h_{9r}^{(0)} =\sum _{p=1}^2 {h_{9r}^{(0)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{9r}^{(0)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(178)

where

$$\begin{aligned} h_{9r}^{(0)} (1)= & {} \delta _0^r \big (a_{20}^{(m)}\big )^{2}, \nonumber \\ h_{9r}^{(0)} (2)= & {} \frac{1}{2}\sum _{i=1}^N \big [2a_{20}^{(m)} \left( \delta _i^r b_{2i/m} +\delta _{i+N}^r c_{2i/m} \right) \nonumber \\&+\,\delta _0^r \big (b_{2i/m}^2 +c_{2i/m}^2 \big )\big ], \nonumber \\ h_{9r}^{(0)} \left( i,j,l,1\right)= & {} 2\delta _{l+3N+1}^r b_{2i/m} c_{2j/m} \Delta _2 \left( l,j,i\right) , \nonumber \\ h_{9r}^{(0)} \left( i,j,l,2\right)= & {} \delta _{l+2N+1}^r b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,l\right) , \nonumber \\ h_{9r}^{(0)} \left( i,j,l,3\right)= & {} c_{2i/m} c_{2j/m} \delta _{l+2N+1}^r \Delta _2 \left( i,j,l\right) . \end{aligned}$$
(179)

The tenth and eleventh terms of the constant are

$$\begin{aligned} h_{10r}^{(0)} =h_{11r}^{(0)} =0. \end{aligned}$$
(180)

For the derivatives of \(f_\lambda ^{(c)} \) (\(\lambda =1,2,\ldots ,11)\) with \({\dot{z}}_r \), the first term of cosine coefficients is

$$\begin{aligned} h_{1kr}^{(c)} =\sum _{p=1}^3 {h_{1kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{1kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(181)

where

$$\begin{aligned} h_{1kr}^{(c)} (1)= & {} 6\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} B_{k/m} +3\delta _{k+2N+1}^r ({\dot{a}}_{20}^{(m)} )^{2}, \nonumber \\ h_{1kr}^{(c)} (2)= & {} \frac{3}{2}\delta _0^r \sum _{i=1}^N\sum _{j=1}^N \left[ B_{i/m} B_{j/m} \Delta _1\left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} C_{j/m} \Delta _2\left( i,j,k\right) \right] , \nonumber \\ h_{1kr}^{(c)} (3)= & {} \frac{3}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \Big [\delta _{i+2N+1}^r B_{j/m} \right. \nonumber \\&+\, \delta _{j+2N+1}^r B_{i/m} \Big ]\Delta _1 \left( i,j,k\right) \nonumber \\&\left. +\,\left[ \delta _{i+3N+1}^r C_{j/m} +\delta _{j+3N+1}^r C_{i/m} \right] \Delta _2 \left( i,j,k\right) \right\} , \nonumber \end{aligned}$$
$$\begin{aligned} h_{1kr}^{(c)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+3N+1}^r C_{j/m} B_{l/m} +\delta _{j+3N+1}^r C_{i/m} B_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r C_{i/m} C_{j/m} \right] \Delta _4 \left( i,j,k,l\right) , \nonumber \\ h_{1kr}^{(c)} \left( i,j,l,2\right)= & {} \Big [\delta _{i+2N+1}^r B_{j/m} B_{l/m} +\,\delta _{j+2N+1}^r B_{i/m} B_{l/m} \nonumber \\&+\,\delta _{l+2N+1}^r B_{i/m} B_{j/m} \Big ]\Delta _3 \left( i,j,k,l\right) . \end{aligned}$$
(182)

The second term of cosine coefficients is

$$\begin{aligned} h_{2kr}^{(c)} =\sum _{p=1}^6 {h_{2kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{2kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(183)

where

$$\begin{aligned} h_{2kr}^{(c)} (1)= & {} 2\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} P_{k/m} +\delta _k^r ({\dot{a}}_{20}^{(m)} )^{2}P_{k/m} , \nonumber \\ h_{2kr}^{(c)} (2)= & {} 2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} B_{k/m} +2\delta _0^r {\dot{a}}_{20}^{(m)} B_{k/m} \nonumber \\&+\,2\delta _{k+2N+1}^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ h_{2kr}^{(c)} (3)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{2kr}^{(c)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r P_{j/m}\right. \nonumber \\&\left. +\,\delta _j^r B_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r Q_{j/m} +\delta _{j+N}^r C_{i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \\ h_{2kr}^{(c)} (5)= & {} \frac{1}{2}\delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{2kr}^{(c)} (6)= & {} \;\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r B_{j/m} \right. \nonumber \\&\left. +\,\delta _{j+2N+1}^r B_{i/m} \right] \Delta _1 \left( i,j,k\right) +\left[ \delta _{i+3N+1}^r C_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r C_{i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \\ h_{2kr}^{(c)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+N}^r C_{j/m} P_{l/m} +\delta _{j+N}^r C_{i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r C_{i/m} C_{j/m} \right] \Delta _4 \left( i,j,k,l\right) , \nonumber \\ h_{2kr}^{(c)} \left( i,j,l,2\right)= & {} 2\left[ \delta _{i+2N+1}^r C_{j/m} Q_{l/m} +\delta _{j+3N+1}^r B_{i/m} Q_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r B_{i/m} C_{j/m} \right] \Delta _5 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(184)

The third term of cosine coefficients is

$$\begin{aligned} h_{3kr}^{(c)} =\sum _{p=1}^4 {h_{3kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{3kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(185)

where

$$\begin{aligned} h_{3kr}^{(c)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} B_{k/m} +2\delta _{k+2N+1}^r {\dot{a}}_{20}^{(m)} a_{20}^{(m)} +\nonumber \\&2\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} b_{2k/m} , \nonumber \\ h_{3kr}^{(c)} (2)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \Big [\delta _{i+2N+1}^r B_{j/m} \right. \nonumber \\&+\,\delta _{j+2N+1}^r B_{i/m} \Big ]\Delta _1 \left( i,j,k\right) \nonumber \\&\left. +\,\left[ \delta _{i+3N+1}^r C_{j/m} +\delta _{j+3N+1}^r C_{i/m} \right] \Delta _2 \left( i,j,k\right) \right\} , \nonumber \\ h_{3kr}^{(c)} (3)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{3kr}^{(c)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+2N+1}^r b_{2i/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r c_{2i/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \end{aligned}$$
$$\begin{aligned} h_{3kr}^{(c)} \left( i,j,l,1\right)= & {} b_{2i/m} \left[ \delta _{j+2N+1}^r B_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r B_{j/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ h_{3kr}^{(c)} \left( i,j,l,2\right)= & {} \;b_{2i/m} \left[ \delta _{j+3N+1}^r C_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+3N+1}^r C_{j/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ h_{3kr}^{(c)} \left( i,j,l,3\right)= & {} 2c_{2i/m} \left[ \delta _{j+2N+1}^r C_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+3N+1}^r B_{j/m} \right] \Delta _6 \left( i,j,k,l\right) . \end{aligned}$$
(186)

The fourth term of cosine coefficients is

$$\begin{aligned} h_{4kr}^{(c)} =\sum _{p=1}^6 {h_{4kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{4kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(187)

where

$$\begin{aligned} h_{4kr}^{(c)} (1)= & {} 2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} P_{k/m}\nonumber \\&+\,2\delta _0^r {\dot{a}}_{20}^{(m)} P_{k/m} +2\delta _k^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} P_{k/m} , \nonumber \\ h_{4kr}^{(c)} (2)= & {} 2\delta _0^r {\dot{a}}_{10}^{(m)} B_{k/m} +\delta _{k+2N+1}^r \big ({\dot{a}}_{10}^{(m)} \big )^{2}B_{k/m} , \nonumber \\ h_{4kr}^{(c)} (3)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ P_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,Q_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{4kr}^{(c)} (4)= & {} \frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _i^r P_{j/m} +\,\delta _j^r P_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\,\left[ \delta _{i+N}^r Q_{j/m} +\delta _{j+N}^r Q_{i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \\ h_{4kr}^{(c)} (5)= & {} \delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,C_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{4kr}^{(c)} (6)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r P_{j/m} \right. \nonumber \\&\left. +\,\delta _j^r B_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&+\left[ \delta _{i+3N+1}^r Q_{j/m} +\delta _{j+N}^r C_{i/m} \right] \Delta _2 \left( i,j,k\right) \}, \nonumber \end{aligned}$$
$$\begin{aligned} h_{4kr}^{(c)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r P_{j/m} P_{l/m} +\delta _j^r B_{i/m} P_{l/m} \right. \nonumber \\&\left. +\,\delta _l^r B_{i/m} P_{j/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ h_{4kr}^{(c)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+2N+1}^r Q_{j/m} Q_{l/m} +\delta _{j+N}^r B_{i/m} Q_{l/m}\right. \nonumber \\&\left. +\,\delta _{l+N}^r B_{i/m} Q_{j/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ h_{4kr}^{(c)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r P_{j/m} Q_{l/m} +\delta _j^r C_{i/m} Q_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r C_{i/m} P_{j/m} \right] \Delta _6 \left( i,j,k,l\right) . \nonumber \\ \end{aligned}$$
(188)

The fifth term of cosine coefficients is

$$\begin{aligned} h_{5kr}^{(c)} =\sum _{p=1}^8 {h_{5kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^4 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{5kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(189)

where

$$\begin{aligned} h_{5kr}^{(c)} (1)= & {} \delta _{2N+1}^r a_{20}^{(m)} P_{k/m} +\delta _k^r a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ h_{5kr}^{(c)} (2)= & {} \delta _0^r a_{20}^{(m)} B_{k/m} +\delta _{k+2N+1}^r a_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ h_{5kr}^{(c)} (3)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \left[ \delta _{i+2N+1}^r P_{j/m}\right. \right. \nonumber \\&\left. +\,\delta _j^r B_{i/m} \right] \Delta _1 \left( i,j,k\right) \nonumber \\&\left. +\,\left[ \delta _{i+3N+1}^r Q_{j/m} +\delta _{j+N}^r C_{i/m} \right] \Delta _2 \left( i,j,k\right) \right\} , \nonumber \\ h_{5kr}^{(c)} (4)= & {} \delta _{2N+1}^r {\dot{a}}_{10}^{(m)} b_{2k/m} +\delta _0^r {\dot{a}}_{20}^{(m)} b_{2k/m} , \nonumber \\ h_{5kr}^{(c)} (5)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{5kr}^{(c)} (6)= & {} \frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _j^r b_{2i/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\delta _{j+N}^r c_{2i/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{5kr}^{(c)} (7)= & {} \;\frac{1}{2}\delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} B_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} C_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{5kr}^{(c)} (8)= & {} \;\frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+2N+1}^r b_{2i/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r c_{2i/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ \end{aligned}$$
$$\begin{aligned} h_{5kr}^{(c)} \left( i,j,l,1\right)= & {} b_{2i/m} \left[ \delta _{j+2N+1}^r P_{l/m} +\delta _l^r B_{j/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ h_{5kr}^{(c)} \left( i,j,l,2\right)= & {} b_{2i/m} \left[ \delta _{j+3N+1}^r Q_{l/m} +\delta _{l+N}^r C_{j/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ h_{5kr}^{(c)} \left( i,j,l,3\right)= & {} c_{2i/m} \left[ \delta _{j+2N+1}^r Q_{l/m} +\delta _{l+N}^r B_{j/m} \right] \Delta _6 \left( i,j,k,l\right) , \nonumber \\ h_{5kr}^{(c)} \left( i,j,l,4\right)= & {} c_{2i/m} \left[ \delta _{j+3N+1}^r P_{l/m} +\delta _l^r C_{j/m} \right] \Delta _4 \left( i,j,k,l\right) . \nonumber \\ \end{aligned}$$
(190)

The sixth term of cosine coefficients is

$$\begin{aligned} h_{6kr}^{(c)} =\sum _{p=1}^3 {h_{6kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{6kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(191)

where

$$\begin{aligned} h_{6kr}^{(c)} (1)= & {} \delta _{k+2N+1}^r \big (a_{20}^{(m)}\big )^{2}+2\delta _{2N+1}^r a_{20}^{(m)} b_{2k/m} , \nonumber \\ h_{6kr}^{(c)} (2)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+2N+1}^r b_{2i/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\delta _{j+N}^r c_{2i/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{6kr}^{(c)} (3)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} c_{2j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{6kr}^{(c)} \left( i,j,l,1\right)= & {} \delta _{l+2N+1}^r b_{2i/m} b_{2j/m} \Delta _3 \left( i,j,k,l\right) , \nonumber \\ h_{6kr}^{(c)} \left( i,j,l,2\right)= & {} \delta _{l+3N+1}^r b_{2i/m} c_{2j/m} \Delta _5 \left( i,j,k,l\right) , \nonumber \\ h_{6kr}^{(c)} \left( i,j,l,3\right)= & {} \delta _{l+2N+1}^r c_{2i/m} c_{2j/m} \Delta _4 \left( i,j,k,l\right) . \end{aligned}$$
(192)

The seventh term of cosine coefficients is

$$\begin{aligned} h_{7kr}^{(c)} =\sum _{p=1}^3 {h_{7kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{7kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(193)

where

$$\begin{aligned} h_{7kr}^{(c)} (1)= & {} 6\delta _0^r {\dot{a}}_{10}^{(m)} P_{k/m} +3\delta _k^r \big ({\dot{a}}_{10}^{(m)} \big ){ }^2, \nonumber \\ h_{7kr}^{(c)} (2)= & {} \frac{3}{2}\delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ P_{j/m} P_{k/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,Q_{i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{7kr}^{(c)} (3)= & {} \frac{3}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\Big [\delta _i^r P_{j/m}+\,\delta _j^r P_{i/m} \Big ]\Delta _1 \left( i,j,k\right) \nonumber \\&+\,\Big [\delta _{i+N}^r Q_{j/m} +\delta _{j+N}^r Q_{i/m} \Big ]\Delta _2 \left( i,j,k\right) \}, \nonumber \\ h_{7kr}^{(c)} \left( i,j,l,1\right)= & {} 3\Big [\delta _{i+N}^r Q_{j/m} P_{l/m} +\delta _{j+N}^r Q_{i/m} P_{l/m} \nonumber \\&+\,\delta _l^r Q_{i/m} Q_{j/m} \Big ]\Delta _4 \left( i,j,k,l\right) , \nonumber \\ h_{7kr}^{(c)} \left( i,j,l,2\right)= & {} \Big [\delta _i^r P_{j/m} P_{l/m} +\delta _j^r P_{i/m} P_{l/m} \nonumber \\&+\,\delta _l^r P_{i/m} P_{j/m} \Big ]\Delta _3 \left( i,j,k,l\right) . \nonumber \\ \end{aligned}$$
(194)

The eighth term of cosine coefficients is

$$\begin{aligned} h_{8kr}^{(c)} =\sum _{p=1}^4 {h_{8kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{8kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(195)

where

$$\begin{aligned} h_{8kr}^{(c)} (1)= & {} 2\delta _0^r {\dot{a}}_{20}^{(m)} P_{k/m} +2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} P_{k/m} \nonumber \\&+\,2\delta _{k+2N+1}^r {\dot{a}}_{10}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ h_{8kr}^{(c)} (2)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \left[ \delta _i^r P_{j/m} +\delta _j^r P_{i/m} \right] \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\left[ \delta _{i+N}^r Q_{j/m} +\delta _{j+N}^r Q_{i/m} \right] \Delta _2 \left( i,j,k\right) \right\} , \nonumber \\ h_{8kr}^{(c)} (3)= & {} \delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} P_{j/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,c_{2i/m} Q_{j/m} \Delta _2 \left( i,j,k\right) \right] ,\;\; \nonumber \\ h_{8kr}^{(c)} (4)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _j^r b_{2i/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\delta _{j+N}^r c_{2i/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \end{aligned}$$
$$\begin{aligned} h_{8kr}^{(c)} \left( i,j,l,1\right)= & {} b_{2i/m} \left[ \delta _j^r P_{j/m} +\delta _l^r P_{l/m} \right] \Delta _3 \left( i,j,k,l\right) , \nonumber \\ h_{8kr}^{(c)} \left( i,j,l,2\right)= & {} b_{2i/m} \left[ \delta _{j+N}^r Q_{l/m} +\delta _{l+N}^r Q_{j/m} \right] \Delta _5 \left( i,j,k,l\right) , \nonumber \\ h_{8kr}^{(c)} \left( i,j,l,3\right)= & {} 2c_{2i/m} \left[ \delta _j^r Q_{l/m} +\delta _{l+N}^r P_{j/m} \right] \Delta _6 \left( i,j,k,l\right) .\nonumber \\ \end{aligned}$$
(196)

The ninth term of cosine coefficients is

$$\begin{aligned} h_{9kr}^{(c)} =\sum _{p=1}^3 {h_{9kr}^{(c)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{9kr}^{(c)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(197)

where

$$\begin{aligned} h_{9kr}^{(c)} (1)= & {} \delta _k^r \big (a_{20}^{(m)}\big )^{2}+2\delta _0^r a_{20}^{(m)} b_{2k/m} , \nonumber \\ h_{9kr}^{(c)} (2)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _j^r b_{2i/m} \Delta _1 \left( i,j,k\right) \right. \nonumber \\&\left. +\,\delta _{j+N}^r c_{2i/m} \Delta _2 \left( i,j,k\right) \right] , \nonumber \\ h_{9kr}^{(c)} (3)= & {} \frac{1}{2}\delta _0^r \sum _{i=1}^N \sum _{j=1}^N \Big [b_{2i/m} b_{2j/m} \Delta _1 \left( i,j,k\right) \nonumber \\&+\,c_{2i/m} c_{2j/m} \Delta _2 \left( i,j,k\right) \Big ] , \nonumber \end{aligned}$$
$$\begin{aligned} h_{9kr}^{(c)} \left( i,j,l,1\right)= & {} \delta _l^r b_{2i/m} b_{2j/m} \Delta _3 \left( i,j,k,l\right) , \nonumber \\ h_{9kr}^{(c)} \left( i,j,l,2\right)= & {} 2\delta _{l+N}^r b_{2i/m} c_{2j/m} \Delta _5 \left( i,j,k,l\right) , \nonumber \\ h_{9kr}^{(c)} \left( i,j,l,3\right)= & {} \delta _l^r c_{2i/m} c_{2j/m} \Delta _4 \left( i,j,k,l\right) . \end{aligned}$$
(198)

The tenth and eleventh terms of cosine coefficients are

$$\begin{aligned} \frac{\partial f_{10k}^{(c)} }{\partial {\dot{z}}_r }=\frac{\partial f_{11k}^{(c)} }{\partial {\dot{z}}_r }=0 \end{aligned}$$
(199)

For the derivatives of \(f_\lambda ^{(c)} \) (\(\lambda =1,2,\ldots ,11)\) with \({\dot{z}}_r \), the first term of sine coefficients is

$$\begin{aligned} h_{1kr}^{(s)} =\sum _{p=1}^3 {h_{1kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{1kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(200)

where

$$\begin{aligned} h_{1kr}^{(s)} (1)= & {} 6\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} C_{k/m} +3\delta _{k+3N+1}^r ({\dot{a}}_{20}^{(m)} )^{2}C_{k/m} , \nonumber \\ h_{1kr}^{(s)} (2)= & {} 3\delta _{2N+1}^r \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} \Delta _2 \left( k,j,i\right) } } , \nonumber \\ h_{1kr}^{(s)} (3)= & {} 3{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{i+2N+1}^r B_{i/m} C_{j/m}\right. \nonumber \\&\left. +\,\delta _{j+3N+1}^r B_{i/m} C_{j/m} \right] \Delta _2 \left( k,j,i\right) ,\nonumber \\ h_{1kr}^{(s)} \left( i,j,l,1\right)= & {} 3\left[ \delta _{i+2N+1}^r C_{j/m} B_{l/m} +\delta _{j+3N+1}^r B_{i/m} B_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+2N+1}^r B_{i/m} C_{j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ h_{1kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+3N+1}^r C_{j/m} C_{l/m} +\delta _{j+3N+1}^r C_{i/m} C_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+3N+1}^r C_{i/m} C_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(201)

The second term of sine coefficients is

$$\begin{aligned} h_{2kr}^{(s)} =\sum _{p=1}^6 {h_{2kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{2kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(202)

where

$$\begin{aligned} h_{2kr}^{(s)} (1)= & {} 2\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} Q_{k/m} +2\delta _{k+N}^r ({\dot{a}}_{20}^{(m)} )^{2}, \nonumber \\ h_{2kr}^{(s)} (2)= & {} 2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} C_{k/m} +2\delta _0^r {\dot{a}}_{20}^{(m)} C_{k/m} \nonumber \\&+2\delta _{k+3N+1}^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ h_{2kr}^{(s)} (3)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\,C_{i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{2kr}^{(s)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \{\left[ \delta _{i+2N+1}^r Q_{j/m} \right. \nonumber \\&\left. +\,\delta _{j+N}^r B_{i/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&+\,\left[ \delta _{i+3N+1}^r P_{j/m} +\delta _j^r C_{i/m} \right] \Delta _2 \left( i,k,j\right) \}, \nonumber \\ h_{2kr}^{(s)} (5)= & {} \delta _0^r \sum _{i=1}^N {\sum _{j=1}^N {B_{i/m} C_{j/m} \Delta _2 \left( k,j,i\right) ,} } \nonumber \\ h_{2kr}^{(s)} (6)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Big [\delta _{i+2N+1}^r C_{j/m} \nonumber \\&+\, \delta _{j+3N+1}^r B_{i/m} \Big ]\Delta _2 \left( k,j,i\right) ,\; \nonumber \end{aligned}$$
$$\begin{aligned} h_{2kr}^{(s)} \left( i,j,l,1\right)= & {} \left[ \delta _{i+2N+1}^r B_{j/m} Q_{l/m} +\delta _{j+2N+1}^r B_{i/m} Q_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r B_{i/m} B_{j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{2kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+3N+1}^r C_{j/m} Q_{l/m} +\delta _{j+3N+1}^r C_{i/m} C_{j/m} Q_{l/m} \right. \nonumber \\&\left. +\,\delta _{l+N}^r C_{i/m} C_{j/m} \right] \Delta _8 \left( i,j,k,l\right) , \nonumber \\ h_{2kr}^{(s)} \left( i,j,l,3\right)= & {} 2[\delta _{i+2N+1}^r C_{j/m} P_{l/m} +\delta _{j+3N+1}^r B_{i/m} P_{l/m} \nonumber \\&+\,\delta _l^r B_{i/m} C_{j/m} ]\Delta _7 \left( i,j,k,l\right) . \end{aligned}$$
(203)

The third term of sine coefficients is

$$\begin{aligned} h_{3kr}^{(s)} =\sum _{p=1}^5 {h_{3kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{3kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(204)

where

$$\begin{aligned} h_{3kr}^{(s)} (1)= & {} 2\delta _{2N+1}^r a_{20}^{(m)} C_{k/m} +2\delta _{k+3N+1}^r {\dot{a}}_{20}^{(m)} a_{20}^{(m)} , \nonumber \\ h_{3kr}^{(s)} (2)= & {} 2\delta _{2N+1}^r {\dot{a}}_{20}^{(m)} c_{2k/m} , \nonumber \\ h_{3kr}^{(s)} (3)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Big [\delta _{i+2N+1}^r C_{j/m} \nonumber \\&+\, \delta _{j+3N+1}^r B_{i/m} \Big ]\Delta _2 \left( k,j,i\right) ,\nonumber \\ h_{3kr}^{(s)} (4)= & {} \delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} C_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\, c_{2i/m} B_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{3kr}^{(s)} (5)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} \delta _{j+3N+1}^r \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\delta _{j+2N+1}^r c_{2i/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{3kr}^{(s)} \left( i,j,l,1\right)= & {} 2b_{2i/m} \Big [\delta _{j+2N+1}^r C_{l/m} \nonumber \\&+\, \delta _{l+3N+1}^r B_{j/m} \Big ]\Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{3kr}^{(s)} \left( i,j,l,2\right)= & {} c_{2i/m} \Big [\delta _{j+2N+1}^r B_{l/m} \nonumber \\&+\, \delta _{l+2N+1}^r B_{j/m} \Big ]\Delta _{10} \left( i,j,k,l\right) , \nonumber \\ h_{3kr}^{(s)} \left( i,j,l,3\right)= & {} c_{2i/m} \left[ \delta _{j+3N+1}^r C_{l/m}\right. \nonumber \\&\left. +\, \delta _{l+3N+1}^r C_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(205)

The fourth term of sine coefficients is

$$\begin{aligned} h_{4kr}^{(s)} =\sum _{p=1}^6 {h_{4kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{4kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(206)

where

$$\begin{aligned} h_{4kr}^{(s)} (1)= & {} 2\delta _{2N+1}^r {\dot{a}}_{10}^{(m)} Q_{k/m} +2\delta _0^r {\dot{a}}_{20}^{(m)} Q_{k/m} , \nonumber \\ h_{4kr}^{(s)} (2)= & {} 2\delta _{k+N}^r {\dot{a}}_{20}^{(m)} {\dot{a}}_{10}^{(m)} +2\delta _0^r {\dot{a}}_{10}^{(m)} C_{k/m}\nonumber \\&+\delta _{k+3N+1}^r \big ({\dot{a}}_{10}^{(m)} \big )^{2}, \nonumber \\ h_{4kr}^{(s)} (3)= & {} \delta _{2N+1}^r \sum _{i=1}^N {\sum _{j=1}^N {P_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) } } , \nonumber \\ h_{4kr}^{(s)} (4)= & {} {\dot{a}}_{20}^{(m)} \sum _{i=1}^N {\sum _{j=1}^N {[\delta _i^r Q_{j/m} +\delta _{j+N}^r P_{i/m} ]\Delta _2 \left( k,j,i\right) } } , \nonumber \\ h_{4kr}^{(s)} (5)= & {} \delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ B_{i/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +C_{i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{4kr}^{(s)} (6)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Big \{\left[ \delta _{i+2N+1}^r Q_{j/m} \right. \nonumber \\&\left. +\delta _{j+N}^r B_{i/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&\left. +\left[ \delta _{i+3N+1}^r P_{j/m} +\delta _j^r C_{i/m} \right] \Delta _2 \left( i,k,j\right) \right\} , \nonumber \end{aligned}$$
$$\begin{aligned} h_{4kr}^{(s)} \left( i,j,l,1\right)= & {} 2\left[ \delta _{i+2N+1}^r P_{j/m} Q_{l/m} +\delta _j^r B_{i/m} Q_{l/m}\right. \nonumber \\&\left. +\delta _{l+N}^r B_{i/m} P_{j/m} \right] \Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{4kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+3N+1}^r P_{j/m} P_{l/m} +\delta _j^r C_{i/m} P_{l/m} \right. \nonumber \\&\left. +\delta _l^r C_{i/m} P_{j/m} \right] \Delta _{10} \left( i,j,k,l\right) , \nonumber \\ h_{4kr}^{(s)} \left( i,j,l,3\right)= & {} \left[ \delta _{i+3N+1}^r Q_{j/m} Q_{l/m} +\delta _{j+N}^r C_{i/m} Q_{l/m}\right. \nonumber \\&\left. +\delta _{l+N}^r C_{i/m} Q_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \nonumber \\ \end{aligned}$$
(207)

The fifth term of sine coefficients is

$$\begin{aligned} h_{5kr}^{(s)} =\sum _{p=1}^8 {h_{5kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^4 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{5kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(208)

where

$$\begin{aligned} h_{5kr}^{(s)} (1)= & {} \delta _{2N+1}^r a_{20}^{(m)} Q_{k/m} +\delta _{k+N}^r a_{20}^{(m)} {\dot{a}}_{20}^{(m)} , \nonumber \\ h_{5kr}^{(s)} (2)= & {} \delta _0^r a_{20}^{(m)} C_{k/m} +\delta _{k+3N+1}^r a_{20}^{(m)} {\dot{a}}_{10}^{(m)} , \nonumber \\ h_{5kr}^{(s)} (3)= & {} \frac{1}{2}a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left\{ \left[ \delta _{i+2N+1}^r Q_{j/m} \right. \right. \nonumber \\&\left. +\delta _{j+N}^r B_{i/m} \right] \Delta _2 \left( k,j,i\right) \nonumber \\&\left. +\left[ \delta _{i+3N+1}^r P_{j/m} +\delta _j^r C_{i/m} \right] \Delta _2 \left( i,k,j\right) \right\} , \nonumber \\ h_{5kr}^{(s)} (4)= & {} \delta _{2N+1}^r {\dot{a}}_{10}^{(m)} c_{2k/m} +\delta _0^r {\dot{a}}_{20}^{(m)} c_{2k/m} , \nonumber \\ h_{5kr}^{(s)} (5)= & {} \frac{1}{2}\delta _{2N+1}^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2j/m} Q_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +c_{2i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{5kr}^{(s)} (6)= & {} \frac{1}{2}{\dot{a}}_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+N}^r b_{2j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\delta _j^r c_{2i/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{5kr}^{(s)} (7)= & {} \frac{1}{2}\delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2i/m} C_{j/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +c_{2i/m} B_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{5kr}^{(s)} (8)= & {} \frac{1}{2}{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+3N+1}^r b_{2i/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\delta _{j+2N+1}^r c_{2i/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{5kr}^{(s)} \left( i,j,l,1\right)= & {} b_{2i/m} \Big [\delta _{j+2N+1}^r Q_{l/m} \nonumber \\&+\, \delta _{l+N}^r B_{j/m} \Big ]\Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{5kr}^{(s)} \left( i,j,l,2\right)= & {} b_{2i/m} \Big [\delta _{j+3N+1}^r P_{l/m} \nonumber \\&+\, \delta _l^r C_{j/m} \Big ]\Delta _7 \left( i,j,k,l\right) , \nonumber \\ h_{5kr}^{(s)} \left( i,j,l,3\right)= & {} c_{2i/m} \Big [\delta _{j+2N+1}^r P_{l/m} \nonumber \\&+\, \delta _l^r B_{j/m} \Big ]\Delta _{10} \left( i,j,k,l\right) , \nonumber \\ h_{5kr}^{(s)} \left( i,j,l,4\right)= & {} c_{2i/m} \Big [\delta _{j+3N+1}^r Q_{l/m} \nonumber \\&+\, \delta _{l+N}^r C_{j/m}\Big ]\Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(209)

The sixth term of sine coefficients is

$$\begin{aligned} h_{6kr}^{(s)} =\sum _{p=1}^3 {h_{6kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{6kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(210)

where

$$\begin{aligned} h_{6kr}^{(s)} (1)= & {} \delta _{k+3N+1}^r \left( a_{20}^{(m)}\right) ^{2}+2\delta _{k+2N+1}^r a_{20}^{(m)} c_{2k/m} , \nonumber \\ h_{6kr}^{(s)} (2)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+2N+1}^r c_{2i/m} \Delta _2 \left( i,k,j\right) \right. \nonumber \\&\left. +\delta _{j+3N+1}^r b_{2i/m} \Delta _2 \left( k,j,i\right) \right] , \nonumber \\ h_{6kr}^{(s)} (3)= & {} \delta _{2N+1}^r \sum _{i=1}^N {\sum _{j=1}^N {c_{2i/m} b_{2j/m} \Delta _2 \left( i,k,j\right) ,} } \; \nonumber \\ h_{6kr}^{(s)} \left( i,j,l,1\right)= & {} \delta _{l+3N+1}^r b_{2i/m} b_{2j/m} \Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{6kr}^{(s)} \left( i,j,l,2\right)= & {} 2\delta _{l+2N+1}^r b_{2i/m} c_{2j/m} \Delta _7 \left( i,j,k,l\right) , \nonumber \\ h_{6kr}^{(s)} \left( i,j,l,3\right)= & {} \delta _{l+3N+1}^r c_{2i/m} c_{2j/m} \Delta _9 \left( i,j,k,l\right) . \nonumber \\ \end{aligned}$$
(211)

The seventh term of sine coefficients is

$$\begin{aligned} h_{7kr}^{(s)} =\sum _{p=1}^3 {h_{7kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^2 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{7kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(212)

where

$$\begin{aligned} h_{7kr}^{(s)} (1)= & {} 6\delta _0^r {\dot{a}}_{10}^{(m)} Q_{k/m} +3\delta _{k+N}^r \big ({\dot{a}}_{10}^{(m)} \big )^{2}, \nonumber \\ h_{7kr}^{(s)} (2)= & {} 3\delta _0^r \sum _{i=1}^N {\sum _{j=1}^N {P_{i/m} Q_{j/m} } \Delta _2 \left( k,j,i\right) } , \nonumber \\ h_{7kr}^{(s)} (3)= & {} 3{\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N {[\delta _i^r Q_{j/m} +\delta _{j+N}^r P_{i/m} ]}\nonumber \\&\Delta _2 \left( k,j,i\right) ,\nonumber \\ h_{7kr}^{(s)} \left( i,j,l,1\right)= & {} 3\left[ \delta _i^r Q_{j/m} P_{l/m} +\delta _{j+N}^r P_{i/m} P_{l/m} \right. \nonumber \\&\left. +\delta _l^r P_{i/m} Q_{j/m} \right] \Delta _7 \left( i,j,k,l\right) , \nonumber \\ h_{7kr}^{(s)} \left( i,j,l,2\right)= & {} \left[ \delta _{i+N}^r Q_{j/m} Q_{l/m} +\delta _{j+N}^r Q_{i/m} Q_{l/m} \right. \nonumber \\&\left. +\delta _{l+N}^r Q_{i/m} Q_{j/m} \right] \Delta _8 \left( i,j,k,l\right) . \nonumber \\ \end{aligned}$$
(213)

The eighth term of sine coefficients is

$$\begin{aligned} h_{8kr}^{(s)} =\sum _{p=1}^4 {h_{8kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{8kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(214)

where

$$\begin{aligned} h_{8kr}^{(s)} (1)= & {} 2\delta _0^r a_{20}^{(m)} Q_{k/m} +2\delta _{k+N}^r {\dot{a}}_{10}^{(m)} a_{20}^{(m)} , \nonumber \\ h_{8kr}^{(s)} (2)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Big [\delta _i^r Q_{j/m} +\,\delta _{j+N}^r P_{i/m} \Big ]\Delta _2 \left( k,j,i\right) , \nonumber \\ h_{8kr}^{(s)} (3)= & {} \delta _0^r \sum _{i=1}^N \sum _{j=1}^N \left[ b_{2j/m} Q_{k/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +c_{2i/m} P_{j/m} \Delta _2 \left( i,k,j\right) \right] , \nonumber \\ h_{8kr}^{(s)} (4)= & {} {\dot{a}}_{10}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \left[ \delta _{j+N}^r b_{2i/m} \Delta _2 \left( k,j,i\right) \right. \nonumber \\&\left. +\delta _j^r c_{2i/m} \Delta _2 \left( i,k,j\right) \right] +2\delta _0^r {\dot{a}}_{10}^{(m)} c_{2k/m} , \nonumber \end{aligned}$$
$$\begin{aligned} h_{8kr}^{(s)} \left( i,j,l,1\right)= & {} 2b_{2i/m} \Big [\delta _j^r Q_{l/m} \nonumber \\&+\, \delta _{l+N}^r P_{j/m} \Big ]\Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{8kr}^{(s)} \left( i,j,l,2\right)= & {} c_{2i/m} \Big [\delta _j^r P_{l/m} \nonumber \\&+\, \delta _l^r P_{j/m} \Big ]\Delta _{10} \left( i,j,k,l\right) , \nonumber \\ h_{8kr}^{(s)} \left( i,j,l,3\right)= & {} c_{2i/m} \Big [\delta _{j+N}^r Q_{l/m} \nonumber \\&+\, \delta _{l+N}^r Q_{j/m} \Big ]\Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(215)

The ninth term of sine coefficients is

$$\begin{aligned} h_{9kr}^{(s)} =\sum _{p=1}^3 {h_{9kr}^{(s)} (p)} +\;\frac{1}{4}\sum _{q=1}^3 {\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {h_{9kr}^{(s)} \left( i,j,l,q\right) } } } }\nonumber \\ \end{aligned}$$
(216)

where

$$\begin{aligned} h_{9kr}^{(s)} (1)= & {} \delta _{k+N}^r \big (a_{20}^{(m)}\big )^{2}+2\delta _0^r a_{20}^{(m)} c_{2k/m} , \nonumber \\ h_{9kr}^{(s)} (2)= & {} a_{20}^{(m)} \sum _{i=1}^N \sum _{j=1}^N \Big [\delta _{j+N}^r b_{2i/m} \Delta _2 \left( k,j,i\right) \nonumber \\&+\delta _j^r c_{2i/m} \Delta _2 \left( i,k,j\right) \Big ] , \nonumber \\ h_{9kr}^{(s)} (3)= & {} \delta _0^r \sum _{i=1}^N {\sum _{j=1}^N {b_{2i/m} c_{2j/m} \Delta _2 \left( k,j,i\right) } } , \nonumber \\ h_{9kr}^{(s)} \left( i,j,l,1\right)= & {} 2b_{2i/m} c_{2j/m} \delta _l^r \Delta _7 \left( i,j,k,l\right) , \nonumber \\ h_{9kr}^{(s)} \left( i,j,l,2\right)= & {} \delta _{l+N}^r b_{2i/m} b_{2j/m} \Delta _9 \left( i,j,k,l\right) , \nonumber \\ h_{9kr}^{(s)} \left( i,j,l,3\right)= & {} \delta _{l+N}^r c_{2i/m} c_{2j/m} \Delta _8 \left( i,j,k,l\right) . \end{aligned}$$
(217)

The tenth and eleventh terms of sine coefficients are

$$\begin{aligned} \frac{\partial f_{10k}^{(s)} }{\partial {\dot{z}}_r }=\frac{\partial f_{11k}^{(s)} }{\partial {\dot{z}}_r }=0. \end{aligned}$$
(218)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Luo, A.C.J. Periodic motions and limit cycles of linear cable galloping. Int. J. Dynam. Control 6, 41–78 (2018). https://doi.org/10.1007/s40435-016-0295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0295-1

Keywords

Navigation