Skip to main content
Log in

Sliding mode control design for robust tracking of open loop stable processes with experimental application

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a new method for robust tracking of open loop stable processes using sliding mode control. In this approach, an identified first-order-plus-deadtime model and integro-differential equation as sliding surface is used for sliding mode controller synthesis. The feature of proposed approach is that it shows robustness during desired trajectory tracking in presence of uncertainties and external disturbances. To ensure the stability, tuning parameters of switching control law were derived from Lyapunov stability analysis. Simulation and experimentation studies show that the proposed method is able to provide satisfactory performance compared to some existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bandyopadhyay B, Janardhanan S, Spurgeon SK (2013) Advances in sliding mode control concept, theory and implementation. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Eker I (2010) Second order sliding mode control with experimental application. ISA Trans 49(3):394–405

    Article  Google Scholar 

  3. Musmade BB, Patre BM (2015) Design of sliding mode control for time-delay processes. Trans Inst Meas Control 37(6):699–707

    Article  Google Scholar 

  4. Fei J, Batur C (2009) A class of adaptive sliding mode controller with proportional integral sliding surface. Proc Inst Mech Eng, Part I: J Syst Control Eng 223(7):989–999

  5. Talole SE, Kolhe JP, Phadke SB (2010) Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans Ind Electron 57(4):1411–1419

    Article  Google Scholar 

  6. Musmade BB, Patre BM (2013) Feedforward-plus-sliding mode controller design with experimental application of coupled tank system. Trans Inst Meas Control 35(8):1058–1067

    Article  Google Scholar 

  7. Talole S, Phadke S (2002) Height control system for sea-skimming missile using predictive filter. J Guid Control Dyn 25(5):989–992

    Article  Google Scholar 

  8. Camacho O, Smith CA (2000) Sliding mode control: an approach to regulate nonlinear chemical processes. ISA Trans 39(2):205–218

    Article  Google Scholar 

  9. Camacho O, Rojas R, Garcia W (2007) Some long time delay sliding mode approaches. ISA Trans 46(1):95–101

    Article  Google Scholar 

  10. Iglesias MSOCE, Garcia Y, Smith C (2007) Fuzzy surface-based sliding mode control. ISA Trans 46(1):73–83

    Article  Google Scholar 

  11. Chen CT, Peng ST (2005) Design of sliding mode control system for chemical processes. J Process Control 15(5):515–530

    Article  Google Scholar 

  12. Almutairi NB, Zribi M (2006) Sliding mode control of coupled tanks. Mechatronics 16(7):427–441

    Article  Google Scholar 

  13. Kaya I (2008) Performance improvement of unsymmetrical processes using sliding mode control approach. Energ Convers Manag 49(1):101–106

    Article  Google Scholar 

  14. Biswas PP, Srivastava R, Ray S, Samanta AN (2009) Sliding mode control of quadruple tank process. Mechatronics 19(4):548–561

    Article  Google Scholar 

  15. Khandekar AA, Malwatkar GM, Patre BM (2013) Discrete sliding mode control for robust tracking of higher order delay time systems with experimental application. ISA Trans 52(1):36–44

    Article  Google Scholar 

  16. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey

    MATH  Google Scholar 

  17. Musmade BB, Patre BM (2012) Design of decentralized sliding mode controllers using dynamic decouplers for TITO processes, In: 12th IEEE international workshop on variable structure systems. IITB, Mumbai, India, pp 105–110

  18. Utkin VI (1997) Control system of variable systems. IEEE Trans Automat Control 22(2):212–222

    Article  MathSciNet  Google Scholar 

  19. Fridman L, Moreno J, Iriarte R (2011) Sliding modes after the first decade of the 21st century. Springer-Verlag, New York

    Google Scholar 

  20. Shahraz A, Boozarjomehry R (2009) A fuzzy sliding mode control approach for nonlinear chemical processes. Control Eng Pract 17(5):541–550

    Article  Google Scholar 

  21. Wang QG, Lee TH, Fung HW, Bi Q, Zhang Y (1999) PID tuning for improved performance. IEEE Trans Control Syst Technol 7(4):457–465

    Article  Google Scholar 

  22. Musmade BB, Munje RK, Patre BM (2011) Design of sliding mode controller to chemical processes for improved performance. Int J Control Autom 4(1):15–31

    Google Scholar 

  23. Ansarifar GR, Talebi HA, Davilu H (2012) Adaptive estimator-based dynamic sliding mode control for the water level of nuclear steam generators. Prog Nucl Energ 56:61–70

    Article  MATH  Google Scholar 

  24. Musmade B, Patil Y, Munje R, Patre B 2015 Design of sliding mode control scheme for nonlinear processes for improved performance, In: Industrial instrumentation and control (ICIC), 2015 International Conference on, IEEE pp 992–996

  25. Ljung L (1999) System identification: theory for the users. Prentice Hall Inc, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Pune, India for financial support under the Grant UNIPUNE/BCUD/31/0910-0153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Musmade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musmade, B.B., Khandekar, A.A. & Patre, B.M. Sliding mode control design for robust tracking of open loop stable processes with experimental application. Int. J. Dynam. Control 5, 1201–1210 (2017). https://doi.org/10.1007/s40435-016-0273-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0273-7

Keywords

Navigation