Advertisement

International Journal of Dynamics and Control

, Volume 5, Issue 4, pp 1156–1171 | Cite as

Creating two disjoint stability intervals along the delay axis via controller design: a class of LTI SISO systems

  • D. Tian
  • R. SipahiEmail author
Article

Abstract

Frequency domain technique is adapted here together with an optimization scheme to design controllers for a class of linear time-invariant single-input single-output systems (SISO) with a loop delay, such that the closed loop system can be made stable in two distinct pre-selected delay intervals \([0,h_{1})\) and \((h_{2},h_{3})\), where \(h_{1}<h_{2}<h_{3}\). This stability-certifying approach is demonstrated over case studies, including an experiment.

Keywords

Time-delay systems Stability Control design Optimization 

Mathematics Subject Classification

34C25 34K20 65K10 93C23 

References

  1. 1.
    Erneux T (2009) Applied delay differential equations, surveys and tutorials in the applied mathematical sciences, vol 3. Springer, New YorkGoogle Scholar
  2. 2.
    Gu K, Chen J, Kharitonov VL (2003) Stability of time-delay systems. Control Engineering, Birkhäuser, BostonCrossRefzbMATHGoogle Scholar
  3. 3.
    Sipahi R, Niculescu SI, Abdallah CT, Michiels W, Gu K (2011) Stability and stabilization of systems with time delay. IEEE Control Syst Mag 31(1):38–65CrossRefMathSciNetGoogle Scholar
  4. 4.
    Stépán G (1989) Retarded dynamical systems: stability and characteristic functions, Pitman research notes in mathematics series, vol 210. Longman Scientific & Technical Co-publisher John Wiley & Sons Inc, New YorkGoogle Scholar
  5. 5.
    He Y, Wang QG, Lin C, Wu M (2007) Delay-range-dependent stability for systems with time-varying delay. Automatica 43(2):371–376CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Li X, Gao H (2011) A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis. IEEE Trans Autom Control 56(9):2172–2178CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Michiels W, Niculescu SI (2007) Stability and stabilization of time-delay systems: an eigenvalue-based approach. Advances in Design and Control, SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  8. 8.
    Abdallah CT, Dorato P, Benites-Read J, Byrne R (1993) Delayed positive feedback can stabilize oscillatory systems. In: American control conference, 1993. pp 3106–3107Google Scholar
  9. 9.
    Bozorg M, Davison EJ (2006) Control of time delay processes with uncertain delays: time delay stability margins. J Process Control 16(4):403–408CrossRefGoogle Scholar
  10. 10.
    Emami T, Watkins JM (2009) Robust performance characterization of PID controllers in the frequency domain. WSEAS Trans Syst Control 4(5):232–242Google Scholar
  11. 11.
    Silva GJ, Datta A, Bhattacharyya SP (2001) PI stabilization of first-order systems with time delay. Automatica 37(12):2025–2031CrossRefzbMATHGoogle Scholar
  12. 12.
    Silva GJ, Datta A, Bhattacharyya SP (2002) New results on the synthesis of PID controllers. IEEE Trans Autom Control 47(2):241–252Google Scholar
  13. 13.
    Yi S, Nelson P, Ulsoy A (2007) Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter. Math Biosci Eng 4(2):355CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Yi S, Nelson PW, Ulsoy AG (2013) Proportional-integral control of first-order time-delay systems via eigenvalue assignment. IEEE Trans Control Syst Technol 21(5):1586–1594CrossRefGoogle Scholar
  15. 15.
    Michiels W, Vyhlídal T (2005) An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type. Automatica 41(6):991–998CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ramírez A, Mondié S, Garrido R, Sipahi R (2015) Design of proportional-integral-retarded (PIR) controllers for second-order LTI systems. IEEE Trans Autom Control 61(6):1688–1693CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Vyhlídal T, Michiels W, McGahan P, Zítek P (2009) Stability impact of small delays in state derivative feedback applied to vibration suppression. Control Eng Pract 17(3):382–393CrossRefGoogle Scholar
  18. 18.
    Sipahi R (2014) Delay-margin design for the general class of single-delay retarded-type LTI systems. Int J Dyn Control 2(2):198–209CrossRefGoogle Scholar
  19. 19.
    Delice II, Sipahi R (2009) Exact upper and lower bounds of crossing frequency set and delay independent stability test for multiple time delayed systems. In: 8th IFAC workshop on time-delay systems. Sinaia, RomaniaGoogle Scholar
  20. 20.
    Delice II, Sipahi R (2012) Delay-independent stability test for systems with multiple time-delays. IEEE Trans Autom Control 57(4):963–972CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Li X, Gao H, Gu K (2016) Delay-independent stability analysis of linear time-delay systems based on frequency discretization. Automatica 70:288–294CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Nia PM (2014) Control-parameter-space classification for delay-independent-stability of linear time-invariant time-delay systems; theory and experiments. PhD Dissertation, Northeastern University, BostonGoogle Scholar
  23. 23.
    Nia PM, Sipahi R (2013) Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays. J Sound Vib 332(14):3589–3604CrossRefGoogle Scholar
  24. 24.
    Olgac N, Sipahi R (2002) An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Trans Autom Control 47(5):793–797CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Olgac N, Ergenc AF, Sipahi R (2005) Delay scheduling: a new concept for stabilization in multiple delay systems. J Vib Control 11(9):1159–1172zbMATHMathSciNetGoogle Scholar
  26. 26.
    Middleton RH, Miller DE (2007) On the achievable delay margin using LTI control for unstable plants. IEEE Trans Autom Control 52(7):1194–1207CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Datko R (1978) A procedure for determination of the exponential stability of certain differential–difference equations. Q Appl Math 36:279–292CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hale JK, Lunel SMV (1993) Introduction to functional differential equations, applied mathematical sciences, vol 99. Springer, New YorkCrossRefzbMATHGoogle Scholar
  29. 29.
    Walton K, Marshall JE (1987) Direct method for TDS stability analysis. IEE Proc D-Control Theory Appl 134(2):101–107CrossRefzbMATHGoogle Scholar
  30. 30.
    Cooke KL, Van Den Driessche P (1986) On zeroes of some transcendental equations. Funkcialaj Ekvacioj 29(1):77–90zbMATHMathSciNetGoogle Scholar
  31. 31.
    Sipahi R, Olgac N (2006) Stability robustness of retarded LTI systems with single delay and exhaustive determination of their imaginary spectra. SIAM J Control Optim 45(5):1680–1696CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rekasius ZV (1980) A stability test for systems with delays. In: Proceedings of joint automatic control conference, San Franciso, CA Paper No. TP9-AGoogle Scholar
  33. 33.
    Gumussoy S, Michiels W (2012) Root locus for SISO dead-time systems: a continuation based approach. Automatica 48(3):480–489CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Sipahi R, Olgac N (2003) Degenerate cases in using the Direct Method. J Dyn Syst Meas Control 125(2):194–201CrossRefGoogle Scholar
  35. 35.
    Ogata K (2001) Modern control engineering, 4th edn. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  36. 36.
    Coleman TF, Zhang Y (2008) Optimization toolbox 4 [user’s Guide]. MathWorks. http://www.mathworks.co.uk/help/pdf_doc/optim/optim_tb.pdf. Accessed 12 Aug 2016
  37. 37.
    Vyhlídal T, Zítek P (2014) QPmR-quasi-polynomial root-finder: Algorithm update and examples. In: Delay systems. Springer International Publishing, Cham, Switzerland, pp 299–312Google Scholar
  38. 38.
    Zhou K, Doyle JC (1998) Essentials of robust control. Prentice hall modular series for engineering. Prentice Hall, Upper Saddle RiverGoogle Scholar
  39. 39.
    Curtiss DR (1918) Recent extentions of descartes’ rule of signs. Ann Math 19(4):251–278CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Gelfand IM, Kapranov MM, Zelevinsky AV (1994) Discriminants, resultants, and multidimensional determinants. Mathematics, Birkhäuser, BostonCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations