Skip to main content
Log in

Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this manuscript,a new 4-D hyper-chaotic system is proposed. Followed by optimal and adaptive control theory. Firstly, we analyze the chaotic properties of new 4-D hyper-chaotic system such as dissipation, equilibrium, stability, time series, phase portraits, Lyapunov exponents, bifurcation and Poincaré maps. Next, we study the optimal control for the new 4-D hyper-chaotic system which is based on the Pontryagin minimum principle. Further, Lyapunov stability theory is used for adaptive control approach and a parameter estimation update law is given for the new 4-D hyper-chaotic system with completely unknown parameters. Finally, to demonstrate the effectiveness of the proposed method we use MATLAB bvp4c and ode45 for numerical simulation which illustrate the stabilized behaviour of states and control functions for different equilibrium points. The plots displaying the time history of states functions and the parameters estimates have been drawn for the different values of equilibrium points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Udaltsov V et al (2003) Communicating with hyperchaos:the dynamics of a DNLF emitter and recovery of transmitted information. Opt Spectrosc 95:114–118

    Article  Google Scholar 

  2. Vicente R, Daudn J, Colet P, Toral R (2005) Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J Quantum Electron 41:541–548

    Article  Google Scholar 

  3. Cafagna D, Grassi G (2003) New 3D-scroll attractors in hyperchaotic Chuas circuits forming a ring. Int J Bifurc Chaos 13:2889–2903

    Article  MATH  MathSciNet  Google Scholar 

  4. Hsieh J-Y, Hwang C-C, Wang A-P, Li W-J (1999) Controlling hyperchaos of the Rossler system. Int J Control 72:882–886

    Article  MATH  Google Scholar 

  5. Grassi G, Mascolo S (1997) Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans Circuits Syst I Fundam Theory Appl 44:1011–1013

    Article  Google Scholar 

  6. Zarei Amin (2015) Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn 81:585–605

    Article  MathSciNet  Google Scholar 

  7. Rossler O (1979) An equation for hyperchaos. Phys Lett A 71:155–157

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen GR, Dong X (1998) From Chaos to order: methodologies, perspectives and applications. World Scientific, Singapore

    Book  MATH  Google Scholar 

  9. Li Y, Tang WKS, Chen G (2005) Generating hyperchaos via state feedback control. Int J Bifurc Chaos Appl Sci Eng 15(10):3367–3375

    Article  Google Scholar 

  10. Chen A, Lu J, Lu J, Yu S (2006) Generating hyperchaotic Lü attractor via state feedback control. Phys A 364:103–110

    Article  Google Scholar 

  11. Nikolov S, Clodong S (2004) Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems. Chaos Solitons Fractals 22(2):407–431

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang X, Wang M (2008) A hyperchaos generated from Lorenz system. Phys A 387(14):3751–3758

    Article  MathSciNet  Google Scholar 

  13. Barboza R (2007) Dynamics of a hyperchaotic Lorenz system. Int J Bifurc Chaos 17(12):4285–4294

    Article  MATH  MathSciNet  Google Scholar 

  14. El-Gohary A, Alwasel IA (2009) The Chaos and optimal control of cancer model with complete unknown parameters. Chaos Solitons Fractals 42:2865–2874

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen CH, Sheu LJ, Chen HK, Chen JH, Wang HC, Chao YC, Lin YK (2009) A new hyper-chaotic system and its synchronization. Nonlinear Anal Real World Appl 10:2088–2096

    Article  MATH  MathSciNet  Google Scholar 

  16. Effati S, Saberi-Nadjafi J, Nik Saberi (2014) Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic system. Appl Math Modell 38:759–774

    Article  MathSciNet  Google Scholar 

  17. Nik HS, Golchaman M (2014) Chaos control of a bounded 4D chaotic system. Neural Comput Appl. doi:10.1007/s00521-013-1539-z

    Google Scholar 

  18. Yu W (2010) Stabilization of three-dimensional chaotic systems via single state feedback controller. Phys Lett A 374:1488–1492

    Article  MATH  Google Scholar 

  19. Roopaei M, Sahraei BR, Lin TC (2010) Adaptive sliding mode control in a novel class of chaotic systems. Commun Nonlinear Sci Numer Simul 15:4158–4170

    Article  MATH  MathSciNet  Google Scholar 

  20. Liao X, Chen G (2003) Chaos synchronization of general Lur’e systems via time-delay feedback control. Int J Bifurcation Chaos 13:207–213

    Article  MATH  Google Scholar 

  21. Kirk DE (1970) Optimal control theory: an introduction. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  22. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  23. Dong E, Liang Z, Du S, Chen Z (2015) Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement. Nonlinear Dyn. doi:10.1007/s11071-015-2352-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Tyagi, A. Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design. Int. J. Dynam. Control 5, 1147–1155 (2017). https://doi.org/10.1007/s40435-016-0265-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0265-7

Keywords

Mathematics Subject Classification

Navigation