Skip to main content

Advertisement

Log in

A delay fractional order model for the co-infection of malaria and HIV/AIDS

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

We propose a delay fractional order model for the co-infection of malaria and the human immunodeficiency virus, where personal protection and vaccination against malaria are considered. We compute the reproduction number of the model and study the stability of the disease free equilibrium. The numerical simulations of the model are performed for distinct values of the order of the fractional derivative, \(\alpha \in (0,1]\). We have also varied relevant parameters, such as the susceptibility to malaria of individuals showing symptoms of acquired immunodeficiency syndrome, \(\nu _2\), the degree of sexual activity due to malaria, \(\epsilon _2\), the human immunodeficiency virus related mortality due to co-infection, \(\psi \), and the level of personal protection against malaria, b. The outputs of the model are biologically meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. The World Health Organization (WHO) (2004) Malaria and HIV interaction and their implications for public health police. http://www.who.int/hiv/pub/prev_care/malariahiv.pdf

  2. Center for Disease Control (CDC). http://www.cdc.gov/malaria

  3. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4:327–336

    Article  Google Scholar 

  4. Center for Disease Control (CDC). http://www.cdc.gov/HIV

  5. Van Geertruyden JP (2014) Interactions between malaria and human immunodefficiency virus anno 2014. Clin Microbiol Infect 20:278–285

    Article  Google Scholar 

  6. Chandra G, Bhattacharjee I, Chatterjee SN, Ghosh A (2008) Mosquito control by larvivorous fish. Indian J Med Res 127:13–27

    Google Scholar 

  7. Hays JN (2005) Epidemics and pandemics: their impacts on human history. ABC-CLIO, Santa Barbara. http://www.abc-clio.com/ABC-CLIOCorporate/About.aspx

  8. Mutero CM, Blank H, Konradsen F, van der Hoek W (2000) Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop 76:253–263

    Article  Google Scholar 

  9. Miller LH, David PH, Hadley TJ, Freeman RR (1984) Perspectives for malaria vaccination (and vaccination). Philos Trans R Soc Lond B 84(2):99–115

    Article  Google Scholar 

  10. Bardaji A, Sigauque B, Sanz S, Maixenchs M, Ordi J, Aponte JJ, Mabunda S, Alonso PL, Menendez C (2011) Impact of malaria at the end of pregnancy on infant mortality and morbidity. J Infect Dis 203(5):691–699

    Article  Google Scholar 

  11. Brown GV (1999) Progress in the development of malaria vaccines: context and constraints. Parassitologia 41:429–432

    Google Scholar 

  12. Chiyaka C, Garira W, Dube S (2007) Transmission model of endemic human malaria in a partially immune population. Math Comput Model 46(5–6):806–822

    Article  MathSciNet  MATH  Google Scholar 

  13. Chiyaka C, Tchuenche JM, Garira W, Dube S (2008) A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. Appl Math Comput 195:641–662

    MathSciNet  MATH  Google Scholar 

  14. Chiyaka C, Tchuenche JM, Garira W, Dube S (2009) Effects of treatment and drugs resistance on the transmission dynamics of malaria in endemic areas. Theor Popul Biol 75:14–29

    Article  MATH  Google Scholar 

  15. Brentlinger PE, Behrens CB, Kublin JG (2007) Challenges in the prevention, diagnosis, and treatment of malaria in human immunodeficiency virus infected adults in sub-Saharan Africa. Arch Intern Med 167(17):1827–1836

    Article  Google Scholar 

  16. Grimwadea K, French N, Mbatha DD, Zungu DD, Dedicoat MD, Gilks CF (2004) HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS 18:547–554

    Article  Google Scholar 

  17. UNICEF Malaria Technical Note 6 (February 2003). http://www.unicef.org/health/files/UNICEFTechnicalNote6MalariaandHIV.docUNICEF

  18. Hoffman IF, Jere CS, Taylor TE, Munthali P, Dyer JR, Wirima JJ, Rogerson SJ, Kumwenda N, Eron JJ, Fiscus SA, Chakraborty H, Taha TE, Cohen MS, Molyneux ME (1999) The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration. AIDS 13(4):487–494

    Article  Google Scholar 

  19. Chitnis N, Cushing JM, Hyman JM (2006) Bifurcation analysis of a mathematical model for malaria transmission. SIAM J Appl Math 67(1):24–45

    Article  MathSciNet  MATH  Google Scholar 

  20. Águas R, Ferreira MU, Gomes MGM (2012) Modeling the effects of relapse in the transmission dynamics of malaria parasites. J Parasitol Res 2012:715–921

    Article  Google Scholar 

  21. Abdu-Raddad LJ, Patnaik P, Kublin JG (2006) Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science 314:1603–1606

    Article  Google Scholar 

  22. Ghosh M, Lashari AA, Li XZ (2013) Biological control of malaria: a mathematical model. Appl Math Comput 219:7923–7939

    MathSciNet  MATH  Google Scholar 

  23. Nyabadza F, Bekele BT, Ra MA, Malonza DM, Chiduku N, Kgosimore M (2015) The implications of HIV treatment on the HIV-malaria coinfection dynamics: a modeling perspective. BioMed Res Int. doi:10.1155/2015/659651

    Google Scholar 

  24. Sardar T, Rana S, Bhattacharya S, Al-Khaled K, Chattopadhyay J (2015) A generic model for a single strain mosquito-transmitted disease memory on the host and the vector. Math Biosci 263:18–36

    Article  MathSciNet  MATH  Google Scholar 

  25. Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    Article  MathSciNet  MATH  Google Scholar 

  26. Ahmed E, El-Sayed AMA, El-Saka HAA (2006) On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys Lett A 358:1–4

  27. Asl FM, Ulsoy AG (2003) Analysis of a system of linear delay differential equations. J Dyn Syst 125:215–223

    Article  Google Scholar 

  28. Ahmed E, Elgazzar AS (2007) On fractional order differential equations model for nonlocal epidemics. Phys A 379:607–614

    Article  MathSciNet  Google Scholar 

  29. Dietz K, Molineaux L, Thomas A (1974) A malaria model tested in the African savannah. Bull World Health Organ 50:347–357

    Google Scholar 

  30. Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H (2005) A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67:1107–1133

    Article  MathSciNet  MATH  Google Scholar 

  31. Mukandavire Z, Gumel AB, Garira W, Tchuenche JM (2009) Mathematical analysis of a model for HIV-malaria co-infection. Math Biosci Eng 6:333–362

    Article  MathSciNet  MATH  Google Scholar 

  32. Detinova TS (1962) Age grouping methods in Diptera of medical importance, with special reference to some vectors of malaria. Monogr Ser 47:213. http://apps.who.int/iris/bitstream/10665/41724/1/WHO_MONO_47_%28part1%29.pdf

Download references

Acknowledgments

Authors wish to thank the Polytechnic of Porto, through the PAPRE Programa de Apoio à Publicação em Revistas Científicas de Elevada Qualidade for financial support. The first author was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020. The research of AC was partially supported by a FCT Grant with reference SFRH/BD/96816/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla M. A. Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A., Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dynam. Control 5, 168–186 (2017). https://doi.org/10.1007/s40435-016-0224-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0224-3

Keywords

Navigation