Skip to main content

Advertisement

Log in

Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this work, a nominal-plus-neighboring-optimal control approach is suggested for the treatment of cancer using the adoptive cellular immunotherapy. The main goal of this therapy is to minimize both tumor concentration and treatment costs while restoring natural defense mechanisms and activating immune response. In the presence of an additional initial concentration of cancer cells, the biological effects of the introduction of a neighboring-optimal treatment in addition to the existing nominally therapy are explored and investigated. The optimal control problem is presented by defining appropriate objective functions. The Pontryagin’s maximum principle and the Pontryagin procedure are both used to obtain optimal solutions for subsequently providing nominal and neighboring-optimal control configurations. The optimal systems are derived and solved numerically using an adapted iterative method with a Runge–Kutta fourth order scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chelur DS, Chalfie M (2007) Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci 104(7):2283–2288

    Article  Google Scholar 

  2. Martin RB (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica 28(6):1113–1123

    Article  MathSciNet  Google Scholar 

  3. Swan GW (1990) Role of optimal control theory in cancer chemotherapy. Math Biosci 101(2):237–284

    Article  MathSciNet  MATH  Google Scholar 

  4. Engelhart M, Lebiedz D, Sager S (2011) Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Math Biosci 229(1):123–134

    Article  MathSciNet  MATH  Google Scholar 

  5. Zouhri S, Saadi S, Elmouki I, Hamdache A, Rachik M (2013) Mixed immunotherapy and chemotherapy of tumors: optimal control approach. Int J Comput Sci Issues 10(4):1

    Google Scholar 

  6. Bomford CK, Kunkler IH (1993) Walter and Miller’s textbook of radiotherapy: radiation physics, therapy, and oncology. Churchill Livingstone, London

    Google Scholar 

  7. Castiglione F, Piccoli B (2007) Cancer immunotherapy, mathematical modeling and optimal control. J Theor Biol 247(4):723–732

    Article  MathSciNet  Google Scholar 

  8. De Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 238(4):841–862

    Article  MathSciNet  Google Scholar 

  9. Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumorimmune interaction. J Math Biol 37(3):235–252

    Article  MATH  Google Scholar 

  10. Chan C, George AJ, Stark J (2003) T cell sensitivity and specificity-kinetic proofreading revisited. Discrete Contin Dyn Syst Ser B 3(3):343–360

    Article  MathSciNet  MATH  Google Scholar 

  11. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305(5681):200–205

    Article  Google Scholar 

  12. Starkov KE, Krishchenko AP (2014) On the global dynamics of one cancer tumour growth model. Commun Nonlinear Sci Numer Simul 19(5):1486–1495

    Article  MathSciNet  Google Scholar 

  13. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F (2015) Cancer evolution: mathematical models and computational inference. Syst Biol 64(1):e1–e25

    Article  Google Scholar 

  14. Babaei N, Salamci MU (2014) State dependent riccati equation based model reference adaptive stabilization of nonlinear systems with application to cancer treatment. In: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa

  15. Babaei N, Salamci MU (2015) Personalized drug administration for cancer treatment using model reference adaptive control. J Theor Biol 371:24–44

    Article  MathSciNet  MATH  Google Scholar 

  16. Swanson KR, Bridge C, Murray JD, Alvord EC (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10

    Article  Google Scholar 

  17. Bunimovich-Mendrazitsky S, Shochat E, Stone L (2007) Mathematical model of BCG immunotherapy in superficial bladder cancer. Bull Math Biol 69(6):1847–1870

    Article  MathSciNet  MATH  Google Scholar 

  18. Elmouki I, Saadi S (2014) BCG immunotherapy optimization on an isoperimetric optimal control problem for the treatment of superficial bladder cancer. Int J Dyn Control 1–7. doi:10.1007/s40435-014-0106-5

  19. Saadi S, Elmouki I, Hamdache A (2015) Impulsive control dosing BCG immunotherapy for non-muscle invasive bladder cancer. Int J Dyn Control 3(3):313–323

    Article  MathSciNet  Google Scholar 

  20. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679

    Article  Google Scholar 

  21. Nazari M, Ghaffari A (2015) The effect of finite duration inputs on the dynamics of a system: proposing a new approach for cancer treatment. Int J Biomath 8(03):1550036

    Article  MathSciNet  MATH  Google Scholar 

  22. Nazari M, Ghaffari A, Arab F (2015) Finite duration treatment of cancer by using vaccine therapy and optimal chemotherapy: state-dependent Riccati equation control and extended Kalman filter. J Biol Syst 23(01):1–29

    Article  MathSciNet  Google Scholar 

  23. Ghaffari A, Nazari M, Arab F (2015) Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: state-dependent Riccati equation control. J Braz Soc Mech Sci Eng 37(1):45–56

    Article  MathSciNet  Google Scholar 

  24. Sahami F, Salamci MU (2015) Decentralized model reference adaptive control design for nonlinear systems; state dependent Riccati equation approach. In: 2015 16th international Carpathian control conference (ICCC), IEEE, pp 437–442

  25. Cimen T (2008) State-dependent Riccati equation (SDRE) control: a survey. In: Proceedings of the 17th World Congress of the international federation of automatic control (IFAC). Seoul, Korea, July, pp 6–11

  26. Naidu DS (2002) Optimal control systems, vol 2. CRC Press, Boca Raton

    Google Scholar 

  27. Dutcher J (2002) Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park) 16(11 Suppl 13):4–10

    Google Scholar 

  28. Hamdache A, Saadi S, Elmouki I, Zouhri S (2013) Two therapeutic approaches for the treatment of HIV infection in AIDS stage. Appl Math Sci 7(105):5243–5257

    Google Scholar 

  29. Rosenberg SA (2008) Overcoming obstacles to the effective immunotherapy of human cancer. Proc Natl Acad Sci 105(35):12643–12644

    Article  Google Scholar 

  30. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  Google Scholar 

  31. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  Google Scholar 

  32. Zitvogel L, Kroemer G (2008) Introduction: the immune response against dying cells. Curr Opin Immunol 20(5):501–503

    Article  Google Scholar 

  33. Hamdache A, Elmouki I, Saadi S (2014) Optimal control with an isoperimetric constraint applied to cancer immunotherapy. Int J Comput Appl 94(15):31–37

    Google Scholar 

  34. Burden TN, Ernstberger J, Fister KR (2004) Optimal control applied to immunotherapy. Discrete Contin Dyn Syst Ser B 4(1):135–146

    MathSciNet  MATH  Google Scholar 

  35. Ben-Ami E, Schachter J (2015) Adoptive transfer of tumor-infiltrating lymphocytes for melanoma: new players, old game. Immunotherapy 7(5):477–479

    Article  Google Scholar 

  36. Stengel RF, Ghigliazza RM, Kulkarni NV (2002) Optimal enhancement of immune response. Bioinformatics 18(9):1227–1235

    Article  MATH  Google Scholar 

  37. Fleming W, Rishel R (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  MATH  Google Scholar 

  38. Pontryagin LS (1987) Mathematical theory of optimal processes. CRC Press, Boca Raton

    MATH  Google Scholar 

  39. Stengel RF (2012) Optimal control and estimation. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  40. Lenhart S, Workman JT (2007) Optimal control applied to biological models. CRC Press, Boca Raton

    MATH  Google Scholar 

  41. McAsey M, Mou L, Han W (2012) Convergence of the forward-backward sweep method in optimal control. Comput Optim Appl 53(1):207–226

    Article  MathSciNet  MATH  Google Scholar 

  42. Graves RN (2010) A method to accomplish the optimal control of continuous dynamical systems with impulse controls via discrete optimal control and utilizing optimal control theory to explore the emergence of synchrony

  43. Brugnano L, Iavernaro F, Trigiante D (2015) Analysis of Hamiltonian boundary value methods (HBVMs): a class of energy-preserving Runge–Kutta methods for the numerical solution of polynomial Hamiltonian systems. Commun Nonlinear Sci Numer Simul 20(3):650–667

    Article  MathSciNet  MATH  Google Scholar 

  44. Kirschner D, Tsygvintsev A (2009) On the global dynamics of a model for tumor immunotherapy. Math Biosci Eng 6(3):573–583

    Article  MathSciNet  MATH  Google Scholar 

  45. Starkov KE, Coria LN (2013) Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy. Nonlinear Anal Real World Appl 14(3):1425–1433

    Article  MathSciNet  MATH  Google Scholar 

  46. Banerjee S (2008) Immunotherapy with interleukin-2: a study based on mathematical modeling. Int J Appl Math Comput Sci 18(3):389–398

    Article  MATH  Google Scholar 

  47. Lukes DL (1982) Differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  48. Elmouki I, Saadi S (2015) Quadratic and linear controls developing an optimal treatment for the use of BCG immunotherapy in superficial bladder cancer. Optim Control Appl Methods . doi:10.1002/oca.2161

  49. Trelat E (2005) Contrôle optimal: théorie et applications. Vuibert, Paris

    MATH  Google Scholar 

  50. Meyer GH (1973) Initial value methods for boundary value problems. Academic Press, New York

    MATH  Google Scholar 

  51. Ramirez WF (1994) Process control and identification. Academic Press, New York

    Google Scholar 

  52. Cheney E, Kincaid D (2012) Numerical mathematics and computing. Cengage Learning, Boston

    MATH  Google Scholar 

  53. Zill D, Wright W (2012) Differential equations with boundary-value problems. Cengage Learning, Boston

    MATH  Google Scholar 

  54. Grewal MS, Andrews AP (2011) Kalman filtering: theory and practice using MATLAB. Wiley, New York

    Book  MATH  Google Scholar 

  55. Xue D, Chen Y (2008) Solving applied mathematical problems with MATLAB. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  56. Siddiqui I, Mantovani A, Allavena P (2015) Adoptive T-cell therapy: optimizing chemokine receptor-mediated homing of T cells in cancer immunotherapy. In: Rezaei N (ed) Cancer immunology. Bench to bedside immunotherapy of cancers. Springer, Berlin, pp 263–282

    Google Scholar 

  57. Darcy PK, Neeson PJ (2015) Adoptive immunotherapy: a new era for the treatment of cancer. Immunotherapy 7(5):469–471

    Article  Google Scholar 

  58. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    Article  Google Scholar 

  59. Stefanovic S, Schuetz F, Sohn C, Beckhove P, Domschke C (2014) Adoptive immunotherapy of metastatic breast cancer: present and future. Cancer Metastasis Rev 33(1):309–320

    Article  Google Scholar 

  60. Shindo Y, Hazama S, Maeda Y, Matsui H, Iida M, Suzuki N, Oka M (2014) Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J Transl Med 12:175

    Article  Google Scholar 

  61. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357

    Article  Google Scholar 

  62. Shaffer DR, Cruz CRY, Rooney CM (2013) Adoptive T cell transfer. In: Curiel TJ (ed) Cancer immunotherapy. Paradigms, practice and promise. Springer, New York, pp 47–70

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor in Chief and all anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Elmouki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdache, A., Saadi, S. & Elmouki, I. Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer. Int. J. Dynam. Control 4, 346–361 (2016). https://doi.org/10.1007/s40435-015-0205-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0205-y

Keywords

Mathematics Subject Classification

Navigation