Advertisement

Mixed lag synchronization in chaotic oscillators and experimental observations

  • Bidesh K. Bera
  • Sourav K. Bhowmick
  • Dibakar Ghosh
Article
  • 49 Downloads

Abstract

We report mixed lag synchronization in coupled counter-rotating oscillators. The trajectories of counter-rotating oscillators has opposite directions of rotation in uncoupled state. Under diffusive coupling via a scalar variable, a mixed lag synchronization emerges when a parameter mismatch is induced in two counter-rotating oscillators. In the state of mixed lag synchronization, one pair of state variables achieve synchronization shifted in time while another pair of state variables are in antisynchronization, however, they are too shifted by the same time. Transition point of mixed-phase synchronization is estimated analytically using approximation theory. Numerical example of the paradigmatic Rössler oscillator is presented and supported by electronic experiment.

Keywords

Mixed lag synchronization Phase synchronization Counter-rotating Electronic circuit 

Notes

Acknowledgments

Authors would like to thank Syamal K. Dana, Awadhesh Prasad and Nirmal Punetha for useful discussions. They also like to thank an anonymous referee for constructive criticisms and suggestions which has helped in improving the manuscript in its present form.

References

  1. 1.
    Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76:1804CrossRefMATHGoogle Scholar
  2. 2.
    Taherion S, Lai YC (1999) Observability of lag synchronization of coupled chaotic oscillators. Phys Rev E 59:R6247(R)CrossRefGoogle Scholar
  3. 3.
    Corron JN, Blakely JN, Pethel SD (2005) Lag and anticipating synchronization without time-delay coupling. Chaos 15:023110CrossRefGoogle Scholar
  4. 4.
    Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Banerjee R, Ghosh D, Padmanaban E, Ramaswamy R, Pecora LM, Dana SK (2012) Enhancing synchrony in chaotic oscillators by dynamic relaying. Phys Rev E 85:027201CrossRefGoogle Scholar
  6. 6.
    Zhan M, Wei GW, Lai CH (2002) Transition from intermittency to periodicity in lag synchronization in coupled Rössler oscillators. Phys Rev E 65:036202CrossRefGoogle Scholar
  7. 7.
    Guo-Hui Li (2009) Inverse lag synchronization in chaotic systems. Chaos Solitons Fractals 40:1076–1080CrossRefMATHGoogle Scholar
  8. 8.
    Pikovsky A, Roseblum M, Kurths J (2002) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Bhowmick SK, Ghosh D, Dana SK (2011) Synchronization in counter-rotating oscillators. Chaos 21:033118MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Blakely JN, Pruitt MW, Corron NJ (2008) Time shifts and correlations in synchronized chaos. Chaos 18:013117CrossRefGoogle Scholar
  11. 11.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefGoogle Scholar
  12. 12.
    Huang WQ, Zhuang XT, Yao S (2009) A network analysis of the Chinese stock market. Phys A 388:2956–2964CrossRefGoogle Scholar
  13. 13.
    Bhowmick SK, Ghosh D, Roy PK, Kurths J, Dana SK (2013) How to induce multiple delays in coupled chaotic oscillators? Chaos 23:043115MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Prasad A (2010) Universal occurrence of mixed-synchronization in counter-rotating nonlinear coupled oscillators. Chaos Soliton Fractrals 43:42–46MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Witkowski B, Perlikowski P, Prasad A, Kapitaniak T (2014) The dynamics of co- and counter rotating coupled spherical pendulums. Eur Phys J Spec Top 223:707–720CrossRefGoogle Scholar
  16. 16.
    Newby JM, Schwemmer MA (2014) Effects of moderate noise on a limit cycle oscillator: counter rotation and bistability. Phys Rev Lett 112:114101CrossRefGoogle Scholar
  17. 17.
    Tabor M (1998) Chaos and integrability in nonlinear dynamics: an introduction. Wiley, New YorkMATHGoogle Scholar
  18. 18.
    Rössler OE (1979) An equation for continuous chaos. Phys Lett A 57:397–398CrossRefGoogle Scholar
  19. 19.
    Bhowmick SK, Pal P, Roy PK, Dana SK (2012) Lag synchronization and scaling of chaotic attractor in coupled system. Chaos 22:023151MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mulet J, Mirasso C, Heil T, Fischer I (2004) Synchronization scenario of two distant mutually coupled semiconductor lasers. J Opt B Quantum Semiclass Opt 6:97CrossRefGoogle Scholar
  21. 21.
    Rosenblum MG, Pikovsky AS, Kurths J (1997) From phase to lag synchronization in coupled chaotic oscillators. Phys Rev Lett 78:4193CrossRefMATHGoogle Scholar
  22. 22.
    Tokuda Isao T, Dana SK, Kurths J (2008) Detecting anomalous phase synchronization from time series. Chaos 18:023134CrossRefGoogle Scholar
  23. 23.
    Dana SK, Blasius B, Kurths J (2006) Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Chaos 16:023111CrossRefMATHGoogle Scholar
  24. 24.
    Moskalenko OI, Koronovskii AA, Hramov AE, Boccaletti S (2012) Generalized synchronization in mutually coupled oscillators and complex networks. Phys Rev E 86:036216CrossRefGoogle Scholar
  25. 25.
    Hramov AE, Koronovskii AA, Kurovskaya MK (2008) Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise. Phys Rev E 78:036212MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hramov AE, Koronovskii AA, Kurovskaya MK (2007) Two types of phase synchronization destruction. Phys Rev E 75:036205MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pikovsky A, Rosenblum M, Kurths J (1996) Synchronization in a population of globally coupled chaotic oscillators. Europhys Lett 34:165CrossRefGoogle Scholar
  28. 28.
    Osipov G, Pikovsky A, Rosenblum M, Kurths J (1997) Phase synchronization effects in a lattice of nonidentical Rössler oscillators. Phys Rev E 55:2353MathSciNetCrossRefGoogle Scholar
  29. 29.
    Carroll TL (1995) A simple circuit for demonstrating regular and synchronized chaos. Am J Phys 63:377CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bidesh K. Bera
    • 1
  • Sourav K. Bhowmick
    • 2
  • Dibakar Ghosh
    • 1
  1. 1.Physics and Applied Mathematics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of ElectronicsAsutosh CollegeKolkataIndia

Personalised recommendations