Passenger seat vibration control of a semi-active quarter car system with hybrid Fuzzy–PID approach

  • Devdutt Singh
  • M. L. Aggarwal


In this paper, semi-active quarter car system with three degrees of freedom is considered for modeling and evaluation of passenger ride comfort. Experimental results of magneto-rheological shock absorber are modeled using polynomial model. The considered algorithms in semi-active quarter car suspension system include PID controller, fuzzy logic controller, hybrid fuzzy–PID controller and hybrid fuzzy–PID controller with coupled rules. Simulation responses of the controlled semi-active and uncontrolled quarter car systems are compared under bump type of road excitation in time domain. Simulation results demonstrate that the semi-active suspension system having hybrid fuzzy–PID controller with coupled rules provide best performance in controlling the passenger seat acceleration and displacement response compared to uncontrolled and other controlled cases.


Passenger seat vibrations Quarter car model Hybrid fuzzy PID Magneto-rheological shock absorber 


  1. 1.
    Hrovat D (1997) Survey of advanced suspension developments and related optimal control applications. Automatica 33(10):1781–1817MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Karnopp DC, Crosby MJ, Harwood RA (1974) Vibration control using semi-active force generators. ASME J Eng Ind 96(2):619–626CrossRefGoogle Scholar
  3. 3.
    Wilson CMD, Abdullah MM (2010) Structural vibration reduction using self-tuning fuzzy control of magnetorheological dampers. Bull Earthq Eng 8(4):1037–1054CrossRefGoogle Scholar
  4. 4.
    Song XB, Ahmadian M, Southward S, Miller LR (2005) An adaptive semiactive control algorithm for magnetorheological suspension systems. J Vib Acoust Trans ASME 127(5):493–502CrossRefGoogle Scholar
  5. 5.
    Ahmadian M, Poynor JC (2001) An evaluation of magneto rheological dampers for controlling gun recoil dynamics. Shock Vib 8(3–4):147–155CrossRefGoogle Scholar
  6. 6.
    Ying ZG, Zhu WQ, Soong TT (2003) A stochastic optimal semi-active control strategy for ER/MR damper. J Sound Vib 259(1):45–62MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Rashid MM, Hussain MA, Rahim NA, Momoh JS (2007) Development of a semi-active car suspension control system using magneto-rheological damper model. Int J Mech Mater Eng 2(2):93–108Google Scholar
  8. 8.
    El-Kafafy M, El-Demerdash SM, Rabeih AAM (2012) Automotive ride comfort control using MR fluid damper. Engineering 4(4):179–187CrossRefGoogle Scholar
  9. 9.
    Batterbee DC, Sims ND (2007) Hardware-in-the-loop simulation of magnetorheological dampers for vehicle suspension systems. Proc Inst Mech Eng Part I J Syst Contr Eng 221(2):265–278CrossRefGoogle Scholar
  10. 10.
    Nguyen QH, Choi SB (2009) Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater Struct 18(3):035012CrossRefGoogle Scholar
  11. 11.
    Sung KG, Choi SB (2011) Design and control of a MR shock absorber for electronic control suspension. J Korean Soc Precis Eng 28:31–39Google Scholar
  12. 12.
    Lee JH, Han C, Ahn D, Lee JK, Park SH, Park S (2013) Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems. Sci World J. doi: 10.1155/2013/894016 Google Scholar
  13. 13.
    Dong XM, Yu M, Liao CR, Chen WM (2010) Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dyn 59:433–453CrossRefMATHGoogle Scholar
  14. 14.
    Yu M, Dong XM, Choi SB, Liao CR (2009) Human simulated intelligent control of vehicle suspension system with MR dampers. J Sound Vib 319:753–767CrossRefGoogle Scholar
  15. 15.
    El-Kafafy M, El-Demerdash SM, Rabeih AAM (2012) Automotive ride comfort control using MR fluid damper. Engineering 4(4):179–187CrossRefGoogle Scholar
  16. 16.
    Unger A, Schimmack F, Lohmann B, Schwarz R (2013) Application of LQ-based semi-active suspension control in a vehicle. Contr Eng Pract 21:1841–1850CrossRefGoogle Scholar
  17. 17.
    Paksoy M, Guclu R, Cetin S (2014) Semiactive self-tuning fuzzy logic control of full vehicle model with MR damper. Adv Mech Eng. doi: 10.1155/2014/816813
  18. 18.
    Du HP, Sze KY, Lam J (2005) Semi-active H-infinity control of vehicle suspension with magneto-rheological dampers. J Sound Vib 283(3–5):981–996CrossRefGoogle Scholar
  19. 19.
    Rashid MM, Rahim NA, Hussain MA, Rahman MA (2011) Analysis and experimental study of magnetorheological-based damper for semiactive suspension system using fuzzy hybrids. IEEE Trans Ind Appl 47(2):1051–1059CrossRefGoogle Scholar
  20. 20.
    Assadsangabi B, Eghtesad M, Daneshmand F, Vahdati N (2009) Hybrid sliding mode control of semi-active suspension systems. Smart Mater Struct 18(12):125027CrossRefGoogle Scholar
  21. 21.
    Zong LH, Gong XL, Guo CY, Xuan SH (2012) Inverse neuro-fuzzy MR damper model and its application in vibration control of vehicle suspension system. Veh Syst Dyn 50(7):1025–1041CrossRefGoogle Scholar
  22. 22.
    Nugroho PW, Li W, Du H, Alici G, Yang J (2014) An adaptive neuro fuzzy hybrid control strategy for a semiactive suspension with magneto rheological damper. Adv Mech Eng. doi: 10.1155/2014/487312
  23. 23.
    Choi SB, Lee SK, Park YP (2001) A hysteresis model for the field-dependent damping force of a magnetorheological damper. J Sound Vib 245(2):375–383CrossRefGoogle Scholar
  24. 24.
    Wang DH, Liao WH (2004) Modeling and control of magnetorheological fluid dampers using neural networks. Smart Mater Struct 14:111–126CrossRefGoogle Scholar
  25. 25.
    Du H, Lam J, Zhang N (2006) Modeling of a magneto-rheological damper by evolving radial basis function networks. Eng Appl Artif Intell 19:869–881CrossRefGoogle Scholar
  26. 26.
    Boada MJL, Calvo JA, Boada BL, Diaz V (2011) Modeling of a magnetorheological damper by recursive lazy learning. Int J Non-Linear Mech 46(3):479–485CrossRefGoogle Scholar
  27. 27.
    Priyandoko G, Baharom MZ (2013) PSO-optimised adaptive neuro-fuzzy system for magneto-rheological damper modeling. Int J Appl Electromagn Mech 41:301–312Google Scholar
  28. 28.
    Gamota DR, Filisko FE (1991) Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol 35:399–425CrossRefGoogle Scholar
  29. 29.
    Spencer BF, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model of a magnetorheological damper. ASCE J Eng Mech 123:230–238CrossRefGoogle Scholar
  30. 30.
    Wereley NM, Pang L, Kamath GM (1998) Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J Intell Mater Syst Struct 9:642–649CrossRefGoogle Scholar
  31. 31.
    Jimenezz R, Alvarez-Icaza LA (2005) LuGre friction model for a magnetorheological damper. Struct Contr Health Monit 12:91–116CrossRefGoogle Scholar
  32. 32.
    Chen KY, Tung PC, Tsai MT, Fan YH (2009) A self-tuning fuzzy PID-type controller design for unbalance compensation in an active magnetic bearing. J Exp Syst Appl 36(4):8560–8570CrossRefGoogle Scholar
  33. 33.
    Guclu R (2005) Fuzzy logic control of seat vibrations of a non-linear full vehicle model. Nonlinear Dyn 40(1):21–34CrossRefMATHGoogle Scholar
  34. 34.
    Devdutt Aggarwal ML (2014) Comparative analysis of passenger ride comfort using various semi-active suspension alternatives. Int J Recent Adv Mech Eng 3(3):79–89CrossRefGoogle Scholar
  35. 35.
    Çetin S, Akkaya AV (2010) Simulation and hybrid fuzzy–PID control for positioning of a hydraulic system. Nonlinear Dyn 61:465–476CrossRefMATHGoogle Scholar
  36. 36.
    Demir O, Keskin I, Cetin S (2012) Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn 67:2139–2151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYMCA University of Science and TechnologyFaridabadIndia

Personalised recommendations