Skip to main content
Log in

Cite this article


This paper deals with the design of an ultra-local model control. The proposed approach is based on the estimation of the ultra-local model parameters using least squares resolution technique instead of numerical derivation technique. The closed-loop control is implemented through an adaptive PI in order to reject the influences of the disturbance and noise output signals. Its main advantages are: its simplicity and its robustness with respect to the parameter uncertainties of system. In this paper, it is processed to test the efficiency of the parameter estimation method compared with the performance of numerical derivation technique. The method is applied to the water level control of a two-tank-system. Numerical simulations show that the generated desired trajectory is followed in an efficient way even with severe operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Fliess M, Join C (2008) Commande sans modèle et commande à modèle restreint. e-STA 5:1–23

    Google Scholar 

  2. Fliess M, Join C (2013) Model-free control. Int J Control 810345. doi:10.1080/00207179

  3. Fliess M, Join C, Riachy S (2011) Rien de plus utile qu’une bonne théorie : la commande sans modèle, 4èmes Journées Doctorales /Journées Nationales MACS, JDJN-MACS’2011, Marseille

  4. Fliess M, Join C (2008) Non-linear estimation is easy. Int J Model Identif Control 4:12–27

    Article  Google Scholar 

  5. Abouaïssa H, Fliess M, Iordanova V, Join C (2011) Prolégomènes à une régulation sans modèle du trafic autoroutier. Conférence Méditerranéenne sur l’Ingénierie sûre des Systèmes Complexes, Agadir

  6. Fliess M, Join C, Mboup M (2010) Algebraic change-point detection, applicable algebra in engineering. Commun Comput 21:131–143

    MathSciNet  MATH  Google Scholar 

  7. Fliess M, Join C, Perruquetti W (2008) Real-time estimation for switched linear systems. In: 47th IEEE conference on decision and control, Cancun, pp 409–414

  8. Fliess M, Join C, Riachy S (2011) Revisiting some practical issues in the implementation of model-free control. In: 18th IFAC world congress, Milan

  9. Join C, Masse J, Fliess M (2008) Etude préliminaire d’une commande sans modèle pour papillon de moteur, a model-free control for an engine throttle: a preliminary study. Journal européen des systèmes automatisés 42:337–354

  10. Join C, Robert G, Fliess M (2010) Model-free based water level control for hydroelectric power plants. In: IFAC conference on control methodologies and tecnologies for energy efficiency, CMTEE’2010, Vilamoura

  11. Mboup M, Join C, Fliess M (2007) A revised look at numerical differentiation with an application to nonlinear feedback control. In: Proceedings of the 15th mediterranean conference on control and automation, MED’2007, Athnes

  12. Mboup M, Join C, Fliess M (2009) Numerical differentiation with annihilators in noisy environment. Numer Algorithm 50:439–467

    Article  MathSciNet  MATH  Google Scholar 

  13. Michel L, Join C, Fliess M, Sicard P, Chériti A (2010) Model-free control of DC/DC converters. In: 12th IEEE workshop on control and modeling for power electronics, COMPEL’2010, Boulder

  14. Rezk S, Join C, El Asmi S (2012) Inter-beat (R–R) intervals analysis using a new time delay estimation technique. In: 20th European signal processing conference, EUSIPCO’2012, Bucarest

  15. Litrico X, Fromion V (2009) Modeling and control of hydrosystems. Springer, London

    Book  Google Scholar 

  16. Zhuan X, Xia X (2007) Models and control methodologies in open water flow dynamics: a survey. IEEE Africon, Windhoek

  17. Join C, Robert G, Fliess M (2010) Vers une commande sans modèle pour aménagements hydroélectriques en cascade, 6ème Conférence Internationale Francophone d’Automatique, CIFA’2010, Nancy

  18. Ayadi M, Haggège J, Bouallègue S, Benrejeb M (2008) A digital flatness-based control system of a DC motor. Stud Inform Control SIC 17:201–214

    Google Scholar 

  19. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non-linear systems: introductory theory and examples. Int J Control 61:1327–1361

    Article  MATH  Google Scholar 

  20. Rotella F, Zambettakis I (2007) Commande des systèmes par platitude, Éditions Techniques de l’ingénieur, S7450

  21. Aström KJ, Hägglund T (2006) Advanced PID controllers, 2nd edn. Instrument Society of America, Research Triangle Park

    Google Scholar 

  22. García Collado FA, d’AndrÌa-Novel B, Fliess M, Mounier H (2009) Analyse fréquentielle des dérivateurs algébriques. XXIIe Coll, GRETSI, Dijon

    Google Scholar 

  23. Rotella F, Borne P (1995) Théorie et pratique du calcul matriciel. Éditions Technip, Paris

    MATH  Google Scholar 

  24. Ben-Israel A, Greville TNE (1974) Generalized inverses: theory and applications. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hajer Thabet.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thabet, H., Ayadi, M. & Rotella, F. Towards an ultra-local model control of two-tank-system. Int. J. Dynam. Control 4, 59–66 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: