Skip to main content
Log in

Thermal and emission performance of CH4 and H2–CH4 thermophotovoltaic micro-power generators

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Micro-power generation can be pursued using various methods such as thermophotovoltaic and thermoelectric generators. In this study, the effects of operational conditions and addition of Hydrogen to methane on the thermal and pollution performance of thermophotovoltaic generators are studied using measurements and modeling in a CH4 and H2 thermophotovoltaic power generators. The measurements focus on key parameters including temperature, radiation efficiency, NOx emission and flame regimes. Measurements of CH4-air mixture show the high sensitivity of temperature to equivalence ratio were the cases with stoichiometric mixture and high combustor diameter have the highest mean wall temperature and NOx concentration. Moreover, the highest radiation efficiency in CH4 flames achieved in a lean mixture with equivalence ratio of 0.9 in the small diameter case. CH4-air mixture gave three flame regimes of weak flame with inlet velocity of 0.1 m/s, asymmetric flame at inlet velocity of 0.23 m/s and steady symmetric flame at inlet velocity of 0.44 m/s. When adding H2 to the fuel (20% H2 and 80% CH4), the radiation efficiency increased from 11.5 to 13.5% which is highly favorable for thermophotovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

D im :

Average diffusivity of the ith species (m2/s)

D ij :

Binary diffusion coefficient of the ith species in jth species (m2/s)

h :

Enthalpy (J/kg)

\({\dot{m}}_{{{\text{H}}}_{2}}\) :

Mass flow rate of the fuel

p :

Pressure (Pa)

\({\dot{Q}}_{{\text{wall}}}\) :

Heat transfer rate from the external walls

\({\dot{Q}}_{{\text{R}}}\) :

Chemical heat release rate

Q LHV :

Lower heating value of hydrogen fuel

R u :

Universal gas constant (J/kmol-K)

T :

Temperature (K)

u :

Velocity vector (m/s)

\(\overline{W }\) :

Mean molecular weight of the mixture

X i :

Mole fraction of species i

Y i :

Mass fraction of the ith species

\({\dot{Q}}_{{\text{Rad}}}\) :

Radiation heat transfer rate

ρ :

Density (kg/m3)

µ :

Dynamic viscosity

λ :

Thermal diffusivity

Φ:

Equivalence ratio

\({\sigma }_{{\text{i}}}\) :

Collision diameter (A)

\({\varepsilon }_{\alpha }\) :

Lennard–Jones energy

\(\dot{{\omega }_{{\text{i}}}}\) :

Rate of reaction of the ith species

\({\Omega }_{{\text{D}}}\) :

Collision integral

\({\eta }_{Q}\) :

Energy conversion efficiency

\({\eta }_{{\text{Rad}}}\) :

Emitter efficiency

\({\eta }_{{\text{total}}}\) :

Total energy conversion efficiency of the TPV

\(\sigma\) :

Boltzmann constant

\(\varepsilon\) :

Surface emissivity

f:

Fluid

wall:

Wall

in:

Inlet

i :

iTh species

ij :

iTh species in jth species

im :

iTh species in the mixture

s:

Surface

sur:

Surrounding

References

  1. Chigier N, Gemci T (2003) A review of micro propulsion technology. In: 41st Aerospace Sciences Meeting and Exhibit

  2. Bazooyar B, Gohari Darabkhani H (2019) Analysis of flame stabilization to a thermo-photovoltaic micro-combustor step in turbulent premixed hydrogen flame. Fuel 257:115989

    Google Scholar 

  3. Fernandez-Pello AC (2002) Micropower generation using combustion: issues and approaches. Proc Combust Inst 29(1):883–899

    Google Scholar 

  4. Yoshida K, et al (2004) High energy density miniature electrical and thermal power source using catalytic combustion of butane. In: 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest. IEEE.

  5. Daneshvar H, Prinja R, Kherani NP (2015) Thermophotovoltaics: fundamentals, challenges and prospects. Appl Energy 159:560–575

    Google Scholar 

  6. Chan WR, et al (2014) Thermophotovoltaic and thermoelectric portable power generators. In: Micro-and Nanotechnology Sensors, Systems, and Applications VI. International Society for Optics and Photonics.

  7. Bianchi M et al (2012) Feasibility study of a thermo-photo-voltaic system for CHP application in residential buildings. Appl Energy 97:704–713

    Google Scholar 

  8. Barbieri ES, Spina PR, Venturini M (2012) Analysis of innovative micro-CHP systems to meet household energy demands. Appl Energy 97:723–733

    Google Scholar 

  9. Amani E, Daneshgar A, Hemmatzade A (2020) A novel combined baffle-cavity micro-combustor configuration for micro-thermo-photo-voltaic applications. Chin J Chem Eng 28(2):403–413

    Google Scholar 

  10. Qiu K, Hayden A (2009) Increasing the efficiency of radiant burners by using polymer membranes. Appl Energy 86(3):349–354

    Google Scholar 

  11. MosayebNezhad M et al (2019) Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine. Renewable Energy 140:407–418

    Google Scholar 

  12. Li J, Zhong B (2008) Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor. Appl Therm Eng 28(7):707–716

    Google Scholar 

  13. Kouchachvili L, Entchev E (2018) Power to gas and H2/NG blend in SMART energy networks concept. Renewable Energy 125:456–464

    Google Scholar 

  14. Yang W et al (2012) Experimental study on micro modular combustor for micro-thermophotovoltaic system application. Int J Hydrog Energy 37(12):9576–9583

    Google Scholar 

  15. Salatino P, Solimene R (2017) Mixing and segregation in fluidized bed thermochemical conversion of biomass. Powder Technol 316:29–40

    Google Scholar 

  16. Örlü R, Alfredsson PH (2008) An experimental study of the near-field mixing characteristics of a swirling jet. Flow Turbul Combust 80(3):323–350

    Google Scholar 

  17. Zuo W et al (2023) Parametric study of cavity on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications. Energy 263:126028

    Google Scholar 

  18. Yilmaz H, Cam O, Yilmaz I (2018) Investigation of an optimal operating condition for a micro combustor regarding basic thermophotovoltaic system requirements. The role of exergy in energy and the environment. Springer, pp 27–41

    Google Scholar 

  19. Wan J et al (2015) Flame-anchoring mechanisms of a micro cavity-combustor for premixed H2/air flame. Chem Eng J 275:17–26

    Google Scholar 

  20. Mane Deshmukh SB, Krishnamoorthy A, Bhojwani VK (2018) Experimental research on the effect of materials of one turn swiss roll combustor on its thermal performance as a heat generating device. Mater Today: Proc 5(1, Part 1):737–744

    Google Scholar 

  21. Yang W et al (2012) An advanced micro modular combustor-radiator with heat recuperation for micro-TPV system application. Appl Energy 97:749–753

    Google Scholar 

  22. Li Q et al (2019) Effects of heat transfer on flame stability limits in a planar micro-combustor partially filled with porous medium. Proc Combust Inst 37(4):5645–5654

    Google Scholar 

  23. Wang W, Zuo Z, Liu J (2019) Numerical study of the premixed propane/air flame characteristics in a partially filled micro porous combustor. Energy 167:902–911

    Google Scholar 

  24. Wan J, Zhao H (2020) Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor. Energy 198:117294

    Google Scholar 

  25. Yan Y et al (2019) Influence of controllable slit width and angle of controllable flow on hydrogen/air premixed combustion characteristics in micro combustor with both sides–slitted bluff body. Int J Hydrogen Energy 44(36):20482–20492

    Google Scholar 

  26. Ko WH (2007) Trends and frontiers of MEMS. Sens Actuators, A 136(1):62–67

    Google Scholar 

  27. Wan J, Shang C, Zhao H (2018) Anchoring mechanisms of methane/air premixed flame in a mesoscale diverging combustor with cylindrical flame holder. Fuel 232:591–599

    Google Scholar 

  28. Mehra A et al (1999) Microfabrication of high-temperature silicon devices using wafer bonding and deep reactive ion etching. J Microelectromech Syst 8(2):152–160

    Google Scholar 

  29. Shan X et al (2005) Studies on a micro combustor for gas turbine engines. J Micromech Microeng 15(9):S215

    Google Scholar 

  30. Hua J, Wu M, Kumar K (2005) Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part II: CFD analysis for a micro-combustor. Chem Eng Sci 60(13):3507–3515

    Google Scholar 

  31. Bashtani J, Seddighi S, Bahrabadi-Jovein I (2018) Control of nitrogen oxide formation in power generation using modified reaction kinetics and mixing. Energy 145:567–581

    Google Scholar 

  32. Yilmaz H, Cam O, Yilmaz I (2017) Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames. Energy 135:585–597

    Google Scholar 

  33. Wang S, Hao J (2012) Air quality management in China: Issues, challenges, and options. J Environ Sci 24(1):2–13

    MathSciNet  Google Scholar 

  34. Yilmaz H (2019) Investigation of combustion and emission performance of a micro combustor: Effects of bluff body insertion and oxygen enriched combustion conditions. Int J Hydrogen Energy 44(47):25985–25999

    Google Scholar 

  35. Han L et al (2021) Effect analysis on energy conversion enhancement and NOx emission reduction of ammonia/hydrogen fuelled wavy micro-combustor for micro-thermophotovoltaic application. Fuel 289:119755

    Google Scholar 

  36. Akhtar S et al (2017) Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications. Appl Energy 192:134–145

    Google Scholar 

  37. Duan Y et al (2019) Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed. Fuel 242:374–381

    Google Scholar 

  38. Schluckner C et al (2020) Fast and accurate CFD-model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics. Fuel 264:116841

    Google Scholar 

  39. Bazooyar B et al (2019) The role of heat recirculation and flame stabilization in the formation of NOX in a thermo-photovoltaic micro-combustor step wall. Int J Hydrogen Energy 44(47):26012–26027

    Google Scholar 

  40. Meziane S, Bentebbiche A (2019) Numerical study of blended fuel natural gas-hydrogen combustion in rich/quench/lean combustor of a micro gas turbine. Int J Hydrogen Energy 44(29):15610–15621

    Google Scholar 

  41. Nadaleti WC et al (2017) Methane–hydrogen fuel blends for SI engines in Brazilian public transport: potential supply and environmental issues. Int J Hydrogen Energy 42(17):12615–12628

    Google Scholar 

  42. Scala F (2016) Attrition during steam gasification of lignite char in a fluidized bed reactor. Fuel Process Technol 141:38–43

    Google Scholar 

  43. Alobaid F (2018) Numerical simulation for next generation thermal power plants. Springer, Switzerland

    Google Scholar 

  44. Pan J et al (2010) Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators. J Micromech Microeng 20(12):125021

    Google Scholar 

  45. Yang WM et al (2011) Research on modular micro combustor-radiator with and without porous media. Chem Eng J 168(2):799–802

    Google Scholar 

  46. Tang A et al (2017) Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights. Appl Energy 203:635–642

    Google Scholar 

  47. Zarabian Ghaeini G et al (2023) Effect of hydrogen concentration on the stabilization of premixed ammonia/hydrogen flames in a heated micro-combustor: numerical investigation. J Braz Soc Mech Sci Eng 45(6):290

    Google Scholar 

  48. Tashtoush BM, Al-Nimr MdA, Khasawneh MA (2019) A comprehensive review of ejector design, performance, and applications. Appl Energy 240:138–172

    Google Scholar 

  49. Turkeli-Ramadan Z, Sharma RN, Raine RR (2015) Two-dimensional simulation of premixed laminar flame at microscale. Chem Eng Sci 138:414–431

    Google Scholar 

  50. Gentillon P et al (2018) Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina. Appl Energy 229:736–744

    Google Scholar 

  51. Enagi II, Al-attab KA, Zainal ZA (2017) Combustion chamber design and performance for micro gas turbine application. Fuel Process Technol 166:258–268

    Google Scholar 

  52. Chiuta S, Bessarabov DG (2018) Design and operation of an ammonia-fueled microchannel reactor for autothermal hydrogen production. Catal Today 310:187–194

    Google Scholar 

  53. Zhang Y et al (2019) Effects of inlet parameters on combustion characteristics of premixed CH4/Air in micro channels. J Energy Inst 92(3):824–834

    Google Scholar 

  54. Gupta A et al (2020) Experimental investigation of the flow in a micro-channelled combustor and its relation to flame behaviour. Exp Thermal Fluid Sci 116:110105

    Google Scholar 

  55. Zhao D et al (2015) Mitigation of premixed flame-sustained thermoacoustic oscillations using an electrical heater. Int J Heat Mass Transf 86:309–318

    Google Scholar 

  56. Wan J et al (2012) Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body. Int J Hydrog Energy 37(24):19190–19197

    Google Scholar 

  57. Li J et al (2009) Characterization of wall temperature and radiation power through cylindrical dump micro-combustors. Combust Flame 156(8):1587–1593

    Google Scholar 

  58. Faramarzpour H, Mazaheri K, Alipoor A (2018) Effect of backward facing step on radiation efficiency in a micro combustor. Int J Therm Sci 132:129–136

    Google Scholar 

  59. Li Y-H et al (2011) Concept and combustion characteristics of the high-luminescence flame for thermophotovoltaic systems. Proc Combust Inst 33(2):3447–3454

    Google Scholar 

  60. Li YH et al (2009) Enhancing thermal, electrical efficiencies of a miniature combustion-driven thermophotovoltaic system. Prog Photovoltaics Res Appl 17(7):502–512

    Google Scholar 

  61. Vance FH, de Goey P, van Oijen JA (2020) The effect of thermal diffusion on stabilization of premixed flames. Combust Flame 216:45–57

    Google Scholar 

  62. Pizza G et al (2008) Dynamics of premixed hydrogen/air flames in mesoscale channels. Combust Flame 155(1–2):2–20

    Google Scholar 

  63. Poinsot T, Veynante D (2005) Theoretical and numerical combustion. RT Edwards, Inc., Murarrie

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Faramarzpour.

Additional information

Technical Editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faramarzpour, H. Thermal and emission performance of CH4 and H2–CH4 thermophotovoltaic micro-power generators. J Braz. Soc. Mech. Sci. Eng. 46, 299 (2024). https://doi.org/10.1007/s40430-024-04874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04874-2

Keywords

Navigation