Skip to main content
Log in

Invariant manifold based nonsingular terminal sliding mode control for systems with multi-source disturbances via output-feedback

  • Review Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an invariant manifold based nonsingular terminal sliding mode control (NTSMC) approach for systems subject to multi-source disturbances to achieve finite-time tracking in the case of only output measurement. By utilizing the invariant manifold, the mismatched disturbances are transferred into the lumped matched disturbance. A universal finite-time observer (UFTO) is designed to estimate the errors between actual states and their desired values, the steady-state of the control input as well as the lumped disturbance. Introducing the estimations, a nonsingular terminal sliding mode controller is constructed. Based on Lyapunov’s theory, the rigorous stability analysis for the closed-loop system is given. Compared with the existing output-feedback sliding mode control (SMC), the proposed approach enables finite-time tracking in the presence of unknown derivatives of the reference signal and multi-source disturbances without requiring additional tracking differentiators. The proposed approach is applied to the DC–DC buck converter system, and simulation results verify the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sira-Ramírez H, Aguilar-Orduña M, Zurita-Bustamante E (2019) On the sliding mode control of mimo nonlinear systems: an input–output approach. Int J Robust Nonlinear Control 29(3):715–735

    Article  MathSciNet  Google Scholar 

  2. Obeid H, Laghrouche S, Fridman L (2021) Dual layer barrier functions based adaptive higher order sliding mode control. Int J Robust Nonlinear Control 31(9):3795–3808

    Article  MathSciNet  Google Scholar 

  3. Hu J, Tan G, Liu L (2023) A new result on H\(\infty\) state estimation for delayed neural networks based on an extended reciprocally convex inequality. IEEE Trans Circuits Syst II: Express Briefs. https://doi.org/10.1109/TCSII.2023.3323834

    Article  Google Scholar 

  4. Polyakov A (2019) Sliding mode control design using canonical homogeneous norm. Int J Robust Nonlinear Control 29(3):682–701

    Article  MathSciNet  Google Scholar 

  5. Lin W-J, Tan G, Wang Q-G, Yu J (2023) Fault-tolerant state estimation for Markov jump neural networks with time-varying delays. IEEE Trans Circuits Syst II: Express Briefs. https://doi.org/10.1109/TCSII.2023.3332390

    Article  Google Scholar 

  6. Dong Y, Chen J (2021) Nonlinear observer-based approach for cooperative control of networked rigid spacecraft systems. Automatica 128:109552

    Article  MathSciNet  Google Scholar 

  7. Wang Y, Yuan Y, Liu J (2021) Finite-time leader-following output consensus for multi-agent systems via extended state observer. Automatica 124:109133

    Article  MathSciNet  Google Scholar 

  8. Esteban FD, Serra FM, De Angelo CH, Montoya OD (2023) Nonlinear control for a DC–DC converter with dual active bridges in a DC microgrid. Int J Electr Power Energy Syst 146:108731

    Article  Google Scholar 

  9. Zhang L, Wang Z, Li S, Ding S, Du H (2020) Universal finite-time observer based second-order sliding mode control for DC–DC buck converters with only output voltage measurement. J Frankl Inst 357(16):11863–11879

    Article  MathSciNet  Google Scholar 

  10. Zhang L, Yang J, Li S (2021) A model-based unmatched disturbance rejection control approach for speed regulation of a converter-driven DC motor using output-feedback. IEEE/CAA J Autom Sin 9(2):365–376

    Article  MathSciNet  Google Scholar 

  11. Yeh Y-L (2022) Output feedback sliding-mode control based on dynamic-gain observer for non-minimum phase systems. J Frankl Inst 359(17):9886–9901

    Article  MathSciNet  Google Scholar 

  12. Zhang J, Shi D, Xia Y (2021) Design of sliding mode output feedback controllers via dynamic sliding surface. Automatica 124:109310

    Article  MathSciNet  Google Scholar 

  13. Wang H, Zhang Z, Tang X, Zhao Z, Yan Y (2022) Continuous output feedback sliding mode control for underactuated flexible-joint robot. J Frankl Inst 359(15):7847–7865

    Article  MathSciNet  Google Scholar 

  14. Mishra JP, Kurode SR (2014) Output-feedback control for stabilization of slosh using higher order sliding modes. IFAC Proc Vol 47(1):1003–1010

    Article  Google Scholar 

  15. Feng J, Gao S, Zhao D, Yan X, Spurgeon SK (2020) Dynamic output feedback sliding mode control for non-minimum phase systems with application to an inverted pendulum. IFAC-PapersOnLine 53(2):5165–5170

    Article  Google Scholar 

  16. Hao L-Y, Zhang Y-Q, Li H (2021) Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Appl Math Comput 401:126078

    MathSciNet  Google Scholar 

  17. Liu H, Khalil HK (2019) Output feedback stabilization using super-twisting control and high-gain observer. Int J Robust Nonlinear Control 29(3):601–617

    Article  MathSciNet  Google Scholar 

  18. Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9–10):924–941

    Article  MathSciNet  Google Scholar 

  19. Tang J, Dang Z, Deng Z, Li C (2022) Adaptive fuzzy nonlinear integral sliding mode control for unmanned underwater vehicles based on ESO. Ocean Eng 266:113154

    Article  Google Scholar 

  20. Zhuang H, Sun Q, Chen Z, Jiang Y (2020) Back-stepping sliding mode control for pressure regulation of oxygen mask based on an extended state observer. Automatica 119:109106

    Article  MathSciNet  Google Scholar 

  21. Yue J, Liu L, Peng Z, Wang D (2023) Wave-filtering finite-time self-learning extended state observers for robotic surface vehicles. Ocean Eng 275:113900

    Article  Google Scholar 

  22. Yang X, Yao J, Deng W (2021) Output feedback adaptive super-twisting sliding mode control of hydraulic systems with disturbance compensation. ISA Trans 109:175–185

    Article  PubMed  Google Scholar 

  23. Rabiee H, Ataei M, Ekramian M (2019) Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica 109:108515

    Article  MathSciNet  Google Scholar 

  24. Dong R-Q, Wu A-G, Zhang Y, Duan G-R, Li B (2022) Anti-unwinding terminal sliding mode attitude tracking control for rigid spacecraft. Automatica 145:110567

    Article  MathSciNet  Google Scholar 

  25. Zhang J, Shi D, Xia Y (2021) Design of sliding mode output feedback controllers via dynamic sliding surface. Automatica 124:109310

    Article  MathSciNet  Google Scholar 

  26. Komurcugil H (2013) Non-singular terminal sliding-mode control of DC–DC buck converters. Control Eng Pract 21(3):321–332

    Article  MathSciNet  Google Scholar 

  27. Zhou M, Su H, Zhou H, Wang L, Liu Y, Yu H (2022) Full-order terminal sliding-mode control for soft open point. Energies 15(14):4999

    Article  Google Scholar 

  28. Zuo Z, Tie L (2016) Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int J Syst Sci 47(6):1366–1375

    Article  MathSciNet  Google Scholar 

  29. Isidori A, Byrnes CI (1990) Output regulation of nonlinear systems. IEEE Trans Autom Control 35(2):131–140

    Article  MathSciNet  Google Scholar 

  30. Zhang L, Yang J, Li S, Yu X (2020) Invariant manifold based output-feedback sliding mode control for systems with mismatched disturbances. IEEE Trans Circuits Syst II: Express Briefs 68(3):933–937

    Google Scholar 

  31. Du H, Qian C, Yang S, Li S (2013) Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems. Automatica 49(2):601–609

    Article  MathSciNet  Google Scholar 

  32. Rabiee H, Ataei M, Ekramian M (2019) Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica 109:108515

    Article  MathSciNet  Google Scholar 

  33. Wang J, Li S, Yang J, Wu B, Li Q (2015) Extended state observer-based sliding mode control for PWM-based DC–DC buck power converter systems with mismatched disturbances. IET Control Theory Appl 9(4):579–586

    Article  MathSciNet  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants 62273254 and 62273199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., You, R. & Zhang, L. Invariant manifold based nonsingular terminal sliding mode control for systems with multi-source disturbances via output-feedback. J Braz. Soc. Mech. Sci. Eng. 46, 161 (2024). https://doi.org/10.1007/s40430-024-04737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04737-w

Keywords

Navigation