Skip to main content
Log in

Examination of the theoretical model for flat-plate solar collectors and integration with solar radiation decomposition/transposition models

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Water heating and climatization are important segments of the residential energy consumption. In this regard, solar thermal energy is a great prospect for promoting energy sustainability. An experimental and theoretical examination of the classical model to evaluate the thermal performance of flat-plate solar collector (FPSC) was conducted in this work. The experimental data were obtained between the months of March and May in Porto Alegre city, Brazil. The model was also integrated with a solar radiation model, for which sixteen combinations of decomposition/transposition models were evaluated. The three best combinations of decomposition/transposition models were identified. The experimental data were compared with the classical model, called M1, obtaining a relative error (RE) between 1.98 and 11.48% and a mean relative error (MRE) of 6.38%. Afterward, two correction factors were identified by the theoretical examination of the classical model. These factors were implemented to correct the determined value of the useful energy. Moreover, two new models, which incorporate the correction factors, were tested, namely, models M2 and M3, respectively. These models were compared with experimental data. The results show a MRE of 4.35 and 3.38%, respectively. Therefore, model M3 showed better results than the classical model M1. A case study was carried out implementing the model M3 to study the FPSC performance in Porto Alegre, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A\) :

Area (\({\mathrm{m}}^{2}\))

AM:

Air mass

C b :

Bond conductance

C p :

Specific heat [J/(kg K)]

D :

Diameter of the tube (m)

E :

Thickness (m)

F :

Efficiency of a straight fin

f :

Friction factor

F′:

Efficiency factor

F″:

Collector flow factor

F R :

Collector heat removal factor

FPSC:

Flat-plate solar collector

G T :

Incident irradiance (W/m2)

h :

Heat transfer coefficient (W/m2 K)

I :

Global horizontal irradiance (W/m2)

I b,n :

Direct normal irradiance (W/m2)

I d :

Diffuse horizontal irradiance (W/m2)

I b :

Direct horizontal irradiance (W/m2)

I T :

Global tilted irradiance (W/m2)

\({I}_{T,b}\) :

Beam radiation on tilted surface (W/m2)

\({I}_{T,d}\) :

Diffused radiation on tilted surface (W/m2)

\({I}_{T,d,\mathrm{iso}}\) :

Isotropic diffuse component on inclined surface (W/m2)

\({I}_{T,d,\mathrm{cs}}\) :

Circumsolar component on inclined surface (W/m2)

\({I}_{T,d,\mathrm{hb}}\) :

Horizon brightening component on inclined surface (W/m2)

\({I}_{T,r}\) :

Ground reflected radiation on tilted surface (W/m2)

\({I}_{o}\) :

Extraterrestrial horizontal irradiance (W/m2)

\({I}_{o,n}\) :

Extraterrestrial direct beam irradiance

\(k\) :

Thermal conductivity (W/m K)

\({k}_{t}\) :

Clearness index

\({k}_{d}\) :

Diffuse fraction

\({k}_{n}\) :

Direct transmittance

\({k}_{n,c}\) :

Clear-sky direct transmittance

\({f}_{xx}\) :

Brightness coefficients

\({f}_{k}\) :

Correction factor from Klucher

\(\dot{m}\) :

Mass flow rate (kg/s)

\(\left(\alpha \tau \right)\) :

Transmittance–absorbance product

\({\alpha }_{s}\) :

Solar altitude angle (degree)

\(\beta\) :

Tilt angle (degree)

\(\varepsilon\) :

Emittance

\(\zeta\) :

Clearness parameter

\(\eta\) :

Thermal efficiency

\(\theta\) :

Angle of incidence (degree)

\({\theta }_{z}\) :

Zenith angle (degree)

\(\mu\) :

Viscosity (kg/m s)

\(\rho\) :

Density (kg/m3)

\({\rho }_{g}\) :

Ground reflectance albedo

\(\sigma\) :

Stefan–Boltzmann constant (W/m2 K4)

\(\tau\) :

Reduce temperature (°C m2/W)

\(\Delta\) :

Brightness parameter

\(\Delta {k}_{n}\) :

Deviation from clear-sky direct transmittance

MBE:

Mean bias error

MRE:

Mean relative error

N :

Number of experimental data

\(\mathrm{Nu}\) :

Nusselt number

\(p\) :

Local air pressure (Pa)

\(P\) :

Perimeter (m)

\(\mathrm{Pr}\) :

Prandtl number

\({Q}_{u}\) :

Useful energy gain (\(W\))

RE:

Relative error

\(\mathrm{Re}\) :

Reynold number

rMBE:

Relative mean bias error

RMSE:

Root-mean-square error

rRMSE:

Relative root-mean-square error

\({R}^{2}\) :

R squared

\(S\) :

Solar energy absorbed (W/m2)

\(T\) :

Temperature (°C and K)

\({U}_{x}\) :

Loss coefficient (W/m2 °C)

\(V\) :

Speed (m/s)

\(w\) :

Distance between tubes (m)

\({W}_{A}\) :

Calibration uncertainty

\({W}_{D}\) :

Uncertainty associated with an instrument

\({W}_{G}\) :

Measurement uncertainty

\({W}_{S}\) :

Data acquisition system uncertainty

\({x}_{i}\) :

Observed measures

\(\overline{x }\) :

Measured mean value

\({y}_{i}\) :

Predict (calculated) value

\({y}_{i}\) :

Predict (calculated) value

\(a\) :

Ambient

\(\mathrm{ave}\) :

Average

\(b\) :

Bottom

\(c\) :

Collector

\(e\) :

Edge

\(\mathrm{exp}\) :

Experimental

\(f\) :

Fluid

\(g\) :

Glass

\(i\) :

Inlet

\(\mathrm{in}\) :

Inner

\(\mathrm{iso}\) :

Insulation

\(L\) :

Overall

\(m\) :

Mean

\(\mathrm{num}\) :

Numerical

\(o\) :

Outlet

\(p\) :

Plate

\(t\) :

Top

\(\mathrm{wa}\) :

Water

References

  1. Jakhrani AQ, Samo SR, Rigit ARH, Kamboh SA (2013) Selection of models for calculation of incident solar radiation on tilted surfaces. World Appl Sci J 22:1334–1343. https://doi.org/10.5829/idosi.wasj.2013.22.09.316

    Article  Google Scholar 

  2. Mendiburu AZ, Roberts JJ, Rodrigues LJ, Verma SK (2023) Thermodynamic modelling for absorption refrigeration cycles powered by solar energy and a case study for Porto Alegre, Brazil. Energy. https://doi.org/10.1016/j.energy.2022.126457

    Article  Google Scholar 

  3. Geovo L, Ri GD, Kumar R, Verma SK, Roberts JJ, Mendiburu AZ (2023) Theoretical model for flat plate solar collectors operating with nanofluids: case study for Porto Alegre, Brazil. Energy. https://doi.org/10.1016/j.energy.2022.125698

    Article  Google Scholar 

  4. Kumar R, Verma SK, Gupta NK, Mendiburu AZ, Sharma A, Alam T et al (2023) Experimental assessment and modeling of solar air heater with V shape roughness on absorber plate. Case Stud Therm Eng 43:102784. https://doi.org/10.1016/j.csite.2023.102784

    Article  Google Scholar 

  5. De Castro N, Ramos D, Brandão R, Prado F, De Morais P, Arnau A et al (2017) As tarifas de energia elétrica no Brasil e em outros países : o porquê das diferenças. Rio de Janeiro, Brazil. Fábrica de Livros

  6. Ministério de Minas e Energia (2018) Uso de Ar Condicionado no Setor Residencial Brasileiro: Perspectivas e contribuições para o avanço em eficiência energética. Brasilia

  7. Ministério de Minas e Energia M, Empresa de Pesquisa Energética E (2016) Brazilian Energy Balance. Brasilia

  8. PROCEL (2007) Pesquisa de posse de equipamentos e hábitos de uso: Relatório Região Sudeste - ano base 2005. Rio de Janeiro

  9. Roberts J, Marotta A, Luz J, Bortoni C, Mendiburu AZ (2018) Robust multi-objective optimization of a renewable based hybrid power system. Appl Energy 223:52–68. https://doi.org/10.1016/j.apenergy.2018.04.032

    Article  Google Scholar 

  10. Pereira E, Martins F, Gonçalves A, Costa R, Lima F, Rüther R et al (2017) Atlas brasileiro de energia solar. Universidade Federal de São Paulo. https://doi.org/10.34024/978851700089

  11. Kalogirou SA (2014) Solar energy engineering processes and systems. Second

  12. Gao D, Gao G, Cao J, Zhong S, Ren X, Dabwan YN et al (2020) Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature. Appl Energy 269:115129. https://doi.org/10.1016/j.apenergy.2020.115129

    Article  Google Scholar 

  13. Hottel HC, Woertz BB (1942) Performance of flat-plate solar-heat collectors. Trans ASME 64

  14. Whillier A (1953) Solar energy collection and its utilization for house heating. MIT

  15. Hottel HC, Whillier A (1958) Evaluation of flat-plate solar collector performance. Trans Conf Use Sol Energy 2:74

    Google Scholar 

  16. Tabor H (1958) Radiation, convection and conduction coefficients in solar collectors. Bull Res Counc Isr 6C:155

    Google Scholar 

  17. Klein SA (1975) Calculation of flat-plate collector loss coefficients. Sol Energy 17:79–80. https://doi.org/10.1016/0038-092X(75)90020-1

    Article  Google Scholar 

  18. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  19. Farahat S, Sarhaddi F, Ajam H (2009) Exergetic optimization of flat plate solar collectors. Renew Energy 34:1169–1174. https://doi.org/10.1016/j.renene.2008.06.014

    Article  Google Scholar 

  20. Alwan NT, Shcheklein SE, Ali OM (2021) Experimental analysis of thermal performance for flat plate solar water collector in the climate conditions of Yekaterinburg, Russia. Mater Today Proc 42:2076–2083. https://doi.org/10.1016/j.matpr.2020.12.263

    Article  Google Scholar 

  21. Vieira AS, Beal CD, Stewart RA (2014) Residential water heaters in Brisbane, Australia: thinking beyond technology selection to enhance energy efficiency and level of service. Energy Build 82:222–236. https://doi.org/10.1016/j.enbuild.2014.07.007

    Article  Google Scholar 

  22. Naspolini HF, Militão HSG, Rüther R (2010) The role and benefits of solar water heating in the energy demands of low-income dwellings in Brazil. Energy Convers Manag 51:2835–2845. https://doi.org/10.1016/j.enconman.2010.06.021

    Article  Google Scholar 

  23. Vechi M, Ghisi E (2018) Evaluation of water heating systems through life cycle assessment. Eur J Sustain Dev 7:131–142. https://doi.org/10.14207/ejsd.2018.v7n3p131

    Article  Google Scholar 

  24. Sangoi JM, Ghisi E (2019) Energy efficiency of water heating systems in single-family dwellings in Brazil. Water 11:1068. https://doi.org/10.3390/w11051068

    Article  Google Scholar 

  25. Naspolini HF, Rüther R (2017) Impacts of domestic solar water heating (DSWH) systems on the cost of a hot shower in low-income dwellings in Brazil. Renew Energy 111:124–130. https://doi.org/10.1016/j.renene.2017.04.004

    Article  Google Scholar 

  26. Karki S, Haapala KR, Fronk BM (2019) Investigation of the combined efficiency of a solar/gas hybrid water heating system. Appl Therm Eng 149:1035–1043. https://doi.org/10.1016/j.applthermaleng.2018.12.086

    Article  Google Scholar 

  27. Cassard H, Denholm P, Ong S (2011) Technical and economic performance of residential solar water heating in the United States. Renew Sustain Energy Rev 15:3789–3800. https://doi.org/10.1016/j.rser.2011.07.016

    Article  Google Scholar 

  28. Lemmini F, Errougani A (2005) Building and experimentation of a solar powered adsorption refrigerator. Renew Energy 30:1989–2003. https://doi.org/10.1016/j.renene.2005.03.003

    Article  Google Scholar 

  29. Asdrubali F, Baldinelli G (2007) Small size absorption refrigerators : a comparison among different solutions in solar feeding applications. Int Congr Refrig 1–8

  30. El-deen EHN, Harby K (2019) Solar-powered adsorption cooling system: a case study on the climatic conditions of Al Minya. Int J Energy Environ Eng 13:193–198

    Google Scholar 

  31. Mustafa J, Alqaed S, Sharifpur M (2022) Evaluation of energy efficiency, visualized energy, and production of environmental pollutants of a solar flat plate collector containing hybrid nanofluid. Sustain Energy Technol Assess 53:102399. https://doi.org/10.1016/j.seta.2022.102399

    Article  Google Scholar 

  32. Said Z, Sharma P, Syam Sundar L, Nguyen VG, Tran VD, Le VV (2022) Using Bayesian optimization and ensemble boosted regression trees for optimizing thermal performance of solar flat plate collector under thermosyphon condition employing MWCNT-Fe3O4/water hybrid nanofluids. Sustain Energy Technol Assess 53:102708. https://doi.org/10.1016/j.seta.2022.102708

    Article  Google Scholar 

  33. Mouli KVVC, Sundar LS, Alklaibi AM, Said Z, Sharma KV, Punnaiah V et al (2023) Exergy efficiency and entropy analysis of MWCNT/Water nanofluid in a thermosyphon flat plate collector. Sustain Energy Technol Assess 55:102911. https://doi.org/10.1016/j.seta.2022.102911

    Article  Google Scholar 

  34. Roberts J, Mendiburu AA, Marotta A (2016) Assessment of photovoltaic performance models for system simulation. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.10.022

    Article  Google Scholar 

  35. Manea TF (2012) Development of a test bench for experiments tube solar collectors of glass and vacuum. (In Portuguese). Universidade Federal Rio Grande do sul

  36. Rosa FN (2012) Applicability of solar collector with evacuated tube in Brazil Brasil. (In Porguese). Federal University of Rio Grande do Sul

  37. Gnielinski V (1973) New equations for heat and mass transfer in the turbulent flow in pipes and channels. Forsch Im Ingenieurwes 41:8–16

    Article  Google Scholar 

  38. Reindl DT, Beckman WA, Duffie JA (1990) Diffuse fraction correlations. Sol Energy 45:1–7. https://doi.org/10.1016/0038-092X(90)90060-P

    Article  Google Scholar 

  39. Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy 44:271–289. https://doi.org/10.1016/0038-092X(90)90055-H

    Article  Google Scholar 

  40. Geovo LJ, Roberts JJ, Mendiburu AA (2020) Comparative Study of solar irradiation models. In: Proceedings 18th Brazilian Congr. Therm. Sci. Eng. ABCM. https://doi.org/10.26678/ABCM.ENCIT2020.CIT20-0202

  41. Roberts JJ, Zevallos AAM, Cassula AM (2017) Assessment of photovoltaic performance models for system simulation. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2016.10.022

    Article  Google Scholar 

  42. Popiel CO, Wojtkowiak J (1998) Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0 °C to 150 °C). Heat Transf Eng 19:87–101. https://doi.org/10.1080/01457639808939929

    Article  Google Scholar 

  43. Zografos AI, Martin WA, Sunderland JE (1987) Equations of properties as a function of temperature for seven fluids. Comput Methods Appl Mech Eng 61:177–187. https://doi.org/10.1016/0045-7825(87)90003-X

    Article  MATH  Google Scholar 

  44. Verma SK, Tiwari AK, Chauhan DS (2016) Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energy Convers Manag 124:607–617. https://doi.org/10.1016/j.enconman.2016.07.007

    Article  Google Scholar 

  45. Verma SK, Tiwari AK, Chauhan DS (2017) Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag 134:103–115. https://doi.org/10.1016/j.enconman.2016.12.037

    Article  Google Scholar 

  46. SODA (2004) Solar Radiation Data (SoDa)

  47. Collares-Pereira M, Rabl A (1979) The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values. Sol Energy 22:155–164. https://doi.org/10.1016/0038-092X(79)90100-2

    Article  Google Scholar 

  48. Perez R, Seals R, Ineichen P, Stewart R, Menicucci D (1987) A new simplified version of the Perez diffuse 39:221–31

  49. Erbs DG, Klein SA, Duffie JA (1982) Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol Energy 28:293–302. https://doi.org/10.1016/0038-092X(82)90302-4

    Article  Google Scholar 

  50. Orgill JF, Hollands KGT (1977) Correlation equation for hourly diffuse radiation on a horizontal surface. Sol Energy 19:357–359. https://doi.org/10.1016/0038-092X(77)90006-8

    Article  Google Scholar 

  51. Maxwell EL (1987) A quasi-physical model for converting hourly Global Horizontal to Direct Normal Insolation. Sol Energy Res Inst 35–46

Download references

Acknowledgements

The authors are grateful to CNPq, Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico), for supporting this work through Project 308915/2022-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Z. Mendiburu.

Additional information

Technical Editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geovo, L., Ancines, C.A., Krenzinger, A. et al. Examination of the theoretical model for flat-plate solar collectors and integration with solar radiation decomposition/transposition models. J Braz. Soc. Mech. Sci. Eng. 45, 606 (2023). https://doi.org/10.1007/s40430-023-04524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04524-z

Keywords

Navigation