Skip to main content
Log in

Investigations into morphology and surface integrity of micro-hole during femtosecond laser drilling of titanium alloy

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

To increase an aircraft engine efficiency, thousands of cooling micro-holes should be drilled on the gas turbine blade. Because of the superior thermal and mechanical properties of titanium alloy, it is challenging to produce micro-holes with high dimensional and form accuracy using conventional methods. So, in this work, an attempt has been made to produce micro-holes on Ti–6Al–4V using a femtosecond laser. A detailed experiment is performed using full factorial design to comprehend the combined effect of laser process parameters and laser scanning strategies on micro-hole characteristics like hole circularity at entry, exit, taper hole, surface finish, and microstructure. A combination of higher laser fluence and a lower pulse repetition rate improves the entry and exit hole circularity. On the contrary, the taper angle is lowered by increasing laser fluence and pulse repetition rate. The zigzag scanning strategy reduces the hole taper, while the concentric circle scanning strategy improves the circularity of the hole at the entry and exit. It is found that the optimum process parameters for improving micro-hole geometry in Ti–6Al–4V include a laser fluence of 1.90 J/cm2, a pulse repetition rate of 20 kHz, and a concentric circle scanning strategy. The surface finish of the micro-hole deteriorates with increase in laser fluence and repetition rate, while concentric circle scanning yields lower surface roughness with fewer surface imperfections. Furthermore, the hole wall microstructure evolution exhibits deep craters at higher laser fluence and undulating grooves at higher repetition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Hyacinth Suganthi X, Natarajan U, Ramasubbu N (2015) A review of accuracy enhancement in microdrilling operations. Int J Adv Manuf Technol 81:199–217. https://doi.org/10.1007/s00170-015-6900-1

    Article  Google Scholar 

  2. Li ZY, Wei XT, Guo YB, Sealy MP (2015) State-of-art, challenges, and outlook on manufacturing of cooling holes for turbine blades. Mach Sci Technol 19:361–399. https://doi.org/10.1080/10910344.2015.1051543

    Article  Google Scholar 

  3. Kang SH, Kim DE, Kang SH, Kim DE (2013) Fatigue crack susceptibility of electrical discharge drilled holes in nickel based heat resistant alloy Fatigue crack susceptibility of electrical discharge drilled holes in nickel based heat resistant alloy. Mater Sci Technol 0836:20–28. https://doi.org/10.1179/174328406X78389

    Article  Google Scholar 

  4. Kumar KK, Samuel GL, Shunmugam MS (2019) Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. J Mater Process Technol 263:266–275. https://doi.org/10.1016/j.jmatprotec.2018.08.028

    Article  Google Scholar 

  5. McNally CA, Folkes J, Pashby IR (2004) Laser drilling of cooling holes in aeroengines: state of the art and future challenges. Mater Sci Technol 20:805–813. https://doi.org/10.1179/026708304225017391

    Article  Google Scholar 

  6. Zhang F, Wang J, Wang X et al (2021) Experimental study of nickel-based superalloy IN792 with femtosecond laser drilling method. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2021.107335

    Article  Google Scholar 

  7. Das DK, Pollock TM (2009) Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy. J Mater Process Technol 209:5661–5668. https://doi.org/10.1016/j.jmatprotec.2009.05.031

    Article  Google Scholar 

  8. Nasrollahi V, Penchev P, Jwad T et al (2018) Drilling of micron-scale high aspect ratio holes with ultra-short pulsed lasers: critical effects of focusing lenses and fluence on the resulting holes’ morphology. Opt Lasers Eng 110:315–322. https://doi.org/10.1016/j.optlaseng.2018.04.024

    Article  Google Scholar 

  9. Chichkov BN, Momma C (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115. https://doi.org/10.1007/BF01567637

    Article  Google Scholar 

  10. Li Q, Yang L, Hou C et al (2019) Surface ablation properties and morphology evolution of K24 nickel based superalloy with femtosecond laser percussion drilling. Opt Lasers Eng 114:22–30. https://doi.org/10.1016/j.optlaseng.2018.10.010

    Article  Google Scholar 

  11. Ancona A, Döring S, Jauregui C et al (2009) Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Opt Lett 34:3304. https://doi.org/10.1364/ol.34.003304

    Article  Google Scholar 

  12. Zhu X, Naumov AY, Villeneuve DM, Corkum PB (1999) Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses. Appl Phys A Mater Sci Process 371:367–371. https://doi.org/10.1007/s003399900384

    Article  Google Scholar 

  13. Jeong B, Lee B, Kim J-H et al (2020) Drilling of sub-100 μm hourglass-shaped holes in diamond with femtosecond laser pulses. Quantum Electron 50:201–204. https://doi.org/10.1070/qel17097

    Article  Google Scholar 

  14. Dhaker KL, Singh B, Shrivastava Y (2020) Experimental investigation and parametric optimisation of the hole-circularity and recast layer during the laser trepan drilling. Aust J Mech Eng. https://doi.org/10.1080/14484846.2020.1794522

    Article  Google Scholar 

  15. Tam SC, Yeo CY, Jana S et al (1993) Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. J Mater Process Technol 37:741–757. https://doi.org/10.1016/0924-0136(93)90133-Q

    Article  Google Scholar 

  16. Chien WT, Hou SC (2007) Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method. Int J Adv Manuf Technol 33:308–316. https://doi.org/10.1007/s00170-006-0454-1

    Article  Google Scholar 

  17. Biswas R, Kuar AS, Biswas SK, Mitra S (2010) Effects of process parameters on hole circularity and taper in pulsed Nd:YAG laser microdrilling of Tin-Al2O3 composites. Mater Manuf Processes 25:503–514. https://doi.org/10.1080/10426910903365737

    Article  Google Scholar 

  18. Wang R, Dong X, Wang K et al (2019) Two-step approach to improving the quality of laser micro-hole drilling on thermal barrier coated nickel base alloys. Opt Lasers Eng 121:406–415. https://doi.org/10.1016/j.optlaseng.2019.05.002

    Article  Google Scholar 

  19. Romoli L, Vallini R (2016) Experimental study on the development of a micro-drilling cycle using ultrashort laser pulses. Opt Lasers Eng 78:121–131. https://doi.org/10.1016/j.optlaseng.2015.10.010

    Article  Google Scholar 

  20. Jia X, Chen Y, Wang H et al (2020) Experimental study on nanosecond-millisecond combined pulse laser drilling of alumina ceramic with different spot sizes. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2020.106351

    Article  Google Scholar 

  21. Wang M, Yang L, Zhang S, Wang Y (2018) Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser. Opt Laser Technol 101:284–290. https://doi.org/10.1016/j.optlastec.2017.10.029

    Article  Google Scholar 

  22. Ebrahimzade V, Haasler D, Malzbender J (2021) Failure mechanism and lifetime of various laser-drilled APS-TBC systems under LCF conditions. Eng Fail Anal 127:105526. https://doi.org/10.1016/j.engfailanal.2021.105526

    Article  Google Scholar 

  23. Zhao W, Yu Z (2018) Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser. Opt Lasers Eng 105:125–131. https://doi.org/10.1016/j.optlaseng.2018.01.011

    Article  Google Scholar 

  24. Deepu P, Jagadesh T, Muthukannan D, Jagadeesh B (2023) Investigation into femtosecond based laser ablation and morphology of micro-hole in titanium alloy. Optik 274:170519. https://doi.org/10.1016/j.ijleo.2023.170519

    Article  Google Scholar 

  25. Abdollahi H, Shahraki S, Teimouri R (2019) Empirical modeling and optimization of process parameters in ultrasonic assisted laser micromachining of Ti–6Al–4V. Int J Lightweight Mater Manuf 2:279–287. https://doi.org/10.1016/j.ijlmm.2019.08.008

    Article  Google Scholar 

  26. Li PH, Guo WG, Huang WD et al (2015) Thermomechanical response of 3D laser-deposited Ti-6Al-4V alloy over a wide range of strain rates and temperatures. Mater Sci Eng A 647:34–42. https://doi.org/10.1016/j.msea.2015.08.043

    Article  Google Scholar 

  27. Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett. https://doi.org/10.1364/OL.7.000196

    Article  Google Scholar 

  28. Chatterjee S, Mahapatra SS, Bharadwaj V et al (2019) Drilling of micro-holes on titanium alloy using pulsed Nd:YAG laser: parametric appraisal and prediction of performance characteristics. Proc Inst Mech Eng Part B J Eng Manuf 233:1872–1889. https://doi.org/10.1177/0954405418805604

    Article  Google Scholar 

  29. Bharatish A, Narasimha Murthy HN, Anand B et al (2013) Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics. Opt Laser Technol 53:22–32. https://doi.org/10.1016/j.optlastec.2013.04.010

    Article  Google Scholar 

  30. Biswas R, Kuar AS, Biswas SK, Mitra S (2010) Characterization of hole circularity in pulsed Nd:YAG laser micro-drilling of TiN-Al2O3 composites. Int J Adv Manuf Technol 51:983–994. https://doi.org/10.1007/s00170-010-2691-6

    Article  Google Scholar 

  31. Zhang J, Guan K, Zhang Z, Guan Y (2020) In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank bone. Opt Express 28:25528. https://doi.org/10.1364/oe.396727

    Article  Google Scholar 

  32. Bandyopadhyay S, Sarin Sundar JK, Sundararajan G, Joshi SV (2002) Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets. J Mater Process Technol 127:83–95. https://doi.org/10.1016/S0924-0136(02)00270-4

    Article  Google Scholar 

  33. Ghoreishi M, Low DKY, Li L (2002) Comparative statistical analysis of hole taper and circularity in laser percussion drilling. Int J Mach Tools Manuf 42:985–995. https://doi.org/10.1016/S0890-6955(02)00038-X

    Article  Google Scholar 

  34. Liu Y, Zhang R, Li W et al (2018) Effect of machining parameter on femtosecond laser drilling processing on SiC/SiC composites. Int J Adv Manuf Technol 96:1795–1811. https://doi.org/10.1007/s00170-017-1163-7

    Article  Google Scholar 

  35. Yilbas BS (1997) Parametric study to improve laser hole drilling process. J Mater Process Technol 70:264–273. https://doi.org/10.1016/S0924-0136(97)00076-9

    Article  Google Scholar 

  36. Jayabal S, Natarajan U, Sekar U (2011) Regression modeling and optimization of machinability behavior of glass-coir-polyester hybrid composite using factorial design methodology. Int J Adv Manuf Technol 55(1–4):263–273. https://doi.org/10.1007/s00170-010-3030-7

    Article  Google Scholar 

  37. Romoli L, Rashed CAA, Fiaschi M (2014) Experimental characterization of the inner surface in micro-drilling of spray holes: a comparison between ultrashort pulsed laser and EDM. Opt Laser Technol 56:35–42. https://doi.org/10.1016/j.optlastec.2013.07.010

    Article  Google Scholar 

  38. Biswas R, Kuar AS, Mitra S (2008) Influence of machining parameters on surface roughness in Nd:YAG laser micro-cutting of alumina-aluminium interpenetrating phase composite. Int J Surf Sci Eng 2:252–264. https://doi.org/10.1504/IJSURFSE.2008.020497

    Article  Google Scholar 

  39. Shalini S, Samuel GL (2021) Ultrafast pulse laser inscription and surface quality characterization of micro-structured silicon wafer. J Manuf Process 62:323–336. https://doi.org/10.1016/j.jmapro.2020.12.034

    Article  Google Scholar 

  40. Zhao W, Shen X, Liu H et al (2020) Effect of high repetition rate on dimension and morphology of micro-hole drilled in metals by picosecond ultra-short pulse laser. Opt Lasers Eng. https://doi.org/10.1016/j.optlaseng.2019.105811

    Article  Google Scholar 

  41. Zhang Z, Wang W, Jiang R et al (2020) Investigation on geometric precision and surface quality of microholes machined by ultrafast laser. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2019.105834

    Article  Google Scholar 

  42. Xu S, Chen Y, Liu H et al (2020) Femtosecond laser ablation of Ti alloy and Al alloy. Optik. https://doi.org/10.1016/j.ijleo.2020.164628

    Article  Google Scholar 

  43. Milovanovi D (2022) Comprehensive ablation study of near-IR femtosecond laser action on the titanium-based alloy Ti6Al4V: morphological effects and surface structures at low and high fluences. Eur Phys J. https://doi.org/10.1140/epjd/s10053-021-00308-z

    Article  Google Scholar 

  44. Biswas S, Karthikeyan A, Kietzig AM (2016) Effect of repetition rate on femtosecond laser-induced homogenous microstructures. Materials. https://doi.org/10.3390/ma9121023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jagadesh.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepu, P., Jagadesh, T. & Duraiselvam, M. Investigations into morphology and surface integrity of micro-hole during femtosecond laser drilling of titanium alloy. J Braz. Soc. Mech. Sci. Eng. 45, 516 (2023). https://doi.org/10.1007/s40430-023-04449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04449-7

Keywords

Navigation