Skip to main content
Log in

Effects of E-diesel on the combustion characteristics of a diesel engine operating at different boost pressures

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The diesel fuels containing 10% and 15% ethanol are known as E-diesel. This study investigates E-diesel’s effects on the diesel cycle and combustion phases under different boost pressure applications. As a result of this study, it was monitored that there is an almost linear correlation between the cylinder gas pressure and the boost pressure during both the intake and power cycles. The maximum pressure rising rate, the ignition delay, and the combustion noise level increased by using E-diesel compared to diesel fuel in all boost pressure applications. It was observed that there was a slight increase in the knock tendency of the diesel engine with the use of E-diesel. The premixed combustion was enhanced with E-diesel, but the controlled combustion stage has a similar trend to neat fossil diesel fuel. The mean convective heat transfer coefficient decreased proportionally with the alcohol content in the mixture. An increase in combustion rate was observed with E-diesel, indicating that flame propagation velocity improved. In order to evaluate the combustion behavior of E-diesel fuels in more detail, the laminar flame velocity of pure ethanol/air, pure butanol/air, and diesel/air mixtures have been reviewed relative to the initial temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(A\) :

Area of heat transfer (m2)

B :

Bore (m)

\({C}_{1},{C}_{2}\) :

Heat transfer parameters (Woschni constants)

\({c}_{v}, {c}_{p}\) :

Specific heats at constant volume and pressure (kJ/kgK)

\({h}_{c}\) :

Convection coefficient (W/m2K)

\({\Delta \overline{h} }_{c}\) :

Heat of combustion (J/kmol)

\({\Delta \overline{h} }_{R}\) :

Enthalpy of the reaction (J/kmol)

\({\overline{h} }_{f}^{o}\) :

Enthalpy of formation (J/kmol)

MW :

Molecular weight (kg/kmol)

N :

Number of moles (kmol)

\(P\) :

Pressure (Pa or bar)

\({P}_{\mathrm{max},\mathrm{CA}}\) :

Location of maximum cylinder gas pressure (oCA)

\({P}_{\mathrm{max}}\) :

Maximum cylinder gas pressure (kPa or bar)

\({p}_{\mathrm{IVC}}\) :

Pressure at IVC (Pa)

\({p}_{\mathrm{M}}\) :

Motoring cylinder gas pressure (kPa)

T :

Temperature (K)

\({T}_{\mathrm{gas}}\) :

Mean gas temperature (K)

\({T}_{\mathrm{IVC}}\) :

Gas temperature at intake valve closing (K)

\({T}_{\mathrm{wall}}\) :

Mean cylinder surface temperature (K)

\(V\) :

Volume (m3)

\({V}_{\mathrm{IVC}}\) :

Cylinder volume at IVC (m3)

\({V}_{\mathrm{d}}\) :

Displacement volume (m3)

W :

Work (Nm)

\(w\) :

Gas velocity in cylinder (m/s)

\({w}_{\mathrm{ITK}}\) :

Gas velocity at IVC (m/s)

\({w}_{\mathrm{CPR}}\) :

Gas velocity at the compression period (m/s)

\({Q}_{\mathrm{net}}\) :

Net heat release rate (J/oCA)

\({Q}_{\mathrm{gross}}\) :

Gross heat release rate (J/oCA)

\({Q}_{\mathrm{losess}}\) :

Heat transfer losses (J)

\({\theta }_{\mathrm{d}}\) :

Flame development angle (oCA)

\({\theta }_{\mathrm{b}}\) :

Rapid burn angle (oCA)

\(\rho\) :

Density (kg/m3)

\(a\) :

After

\(b\) :

Before

\(X\) :

Measured variable

\(\overline{X }\) :

Mean value of an X variable

\(N\) :

Consecutive measurements of an X variable

\({r}_{c}\) :

Compression ratio

\({P}_{\mathrm{rms}}\) :

Root mean square value of the filtered pressure

\({S}_{x}\) :

Standard deviation

\({S}_{\mathrm{e}}\) :

Standard error

\(\gamma\) :

Constant specific heat ratio

\(\theta\) :

Crank angle degree

ϕ :

Equivalence ratio

BDC:

Bottom dead center

CA:

Crank angle

E-diesel:

Ethanol-butan-2-ol-fossil diesel mixtures

EOC:

End of combustion

EVC:

Exhaust valve closing

EVO:

Exhaust valve opening

HRR:

Heat release rate

IVC:

Intake valve closing

IVO:

Intake valve opening

LHV:

Lower heating value

MFB:

Mass fraction burned

MPRR:

Maximum pressure rise rate

Nu:

Nusselt number

PBDF:

Petroleum-based diesel fuel

Re:

Reynolds number

SOC:

Start of combustion

SOI:

Start of injection

TDC:

Top dead center

References

  1. Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manag Assoc 51:809–847. https://doi.org/10.1080/10473289.2001.10464315

    Article  Google Scholar 

  2. Dec JE (2009) Advanced compression-ignition engines - Understanding the in-cylinder processes. Proc Combust Inst 32(2):2727–2742. https://doi.org/10.1016/j.proci.2008.08.008

    Article  Google Scholar 

  3. Chen Z, He J, Chen H et al (2021) Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel 304:121360. https://doi.org/10.1016/j.fuel.2021.121360

    Article  Google Scholar 

  4. Ren Y, Huang ZH, Jiang DM et al (2008) Effects of the addition of ethanol and cetane number improver on the combustion and emission characteristics of a compression ignition engine. Proc Inst Mech Eng Part D J Automob Eng 222:1077–1087. https://doi.org/10.1243/09544070JAUTO516

    Article  Google Scholar 

  5. Liang J, Zhang Q, Ma Q et al (2022) Effect of various ethanol/diesel cosolvents addition on combustion and emission characteristics of a CRDI heavy diesel engine. Energy Rep 8:735–748. https://doi.org/10.1016/j.egyr.2021.12.011

    Article  Google Scholar 

  6. Zeng W, Xu M, Zhang G et al (2012) Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 95:287–297. https://doi.org/10.1016/j.fuel.2011.08.048

    Article  Google Scholar 

  7. Du C, Andersson M, Andersson S (2014) The influence of ethanol blending in diesel fuel on the spray and spray combustion characteristics. SAE Int J Fuels Lubr 7:823–832. https://doi.org/10.4271/2014-01-2755

    Article  Google Scholar 

  8. Wang Y, Liu Z (2018) Numerical study on fuel preheating at cold start phase in an ethanol flex fuel engine. J Energy Resour Technol Trans ASME 140:082207. https://doi.org/10.1115/1.4039740

    Article  Google Scholar 

  9. Liu H, Hu B, Jin C (2016) Effects of different alcohols additives on solubility of hydrous ethanol/diesel fuel blends. Fuel 184:440–448. https://doi.org/10.1016/j.fuel.2016.07.037

    Article  Google Scholar 

  10. Lei J, Shen L, Bi Y, Chen H (2012) A novel emulsifier for ethanol-diesel blends and its effect on performance and emissions of diesel engine. Fuel 93:305–311. https://doi.org/10.1016/j.fuel.2011.06.013

    Article  Google Scholar 

  11. Guarieiro LLN, de Souza AF, Torres EA, de Andrade JB (2009) Emission profile of 18 carbonyl compounds, CO, CO2, and NOx emitted by a diesel engine fuelled with diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable oils. Atmos Environ 43:2754–2761. https://doi.org/10.1016/j.atmosenv.2009.02.036

    Article  Google Scholar 

  12. Lapuerta M, Armas O, García-Contreras R (2007) Stability of diesel-bioethanol blends for use in diesel engines. Fuel 86:1351–1357. https://doi.org/10.1016/j.fuel.2006.11.042

    Article  Google Scholar 

  13. Satgé De Caro P, Mouloungui Z, Vaitilingom G, Berge JC (2001) Interest of combining an additive with diesel-ethanol blends for use in diesel engines. Fuel 80:565–574. https://doi.org/10.1016/S0016-2361(00)00117-4

    Article  Google Scholar 

  14. Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol-diesel fuel blends - A review. Bioresour Technol 96:277–285. https://doi.org/10.1016/j.biortech.2004.04.007

    Article  Google Scholar 

  15. Gerdes KR, Suppes GJ (2001) Miscibility of ethanol in diesel fuels. Ind Eng Chem Res 40:949–956. https://doi.org/10.1021/ie000566w

    Article  Google Scholar 

  16. Ribeiro NM, Pinto AC, Quintella CM et al (2007) The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energy Fuels 21:2433–2445. https://doi.org/10.1021/ef070060r

    Article  Google Scholar 

  17. Britto RF, Martins CA (2014) Experimental analysis of a diesel engine operating in diesel-ethanol dual-fuel mode. Fuel 134:140–150. https://doi.org/10.1016/j.fuel.2014.05.010

    Article  Google Scholar 

  18. Pedrozo VB, May I, Guan W, Zhao H (2018) High efficiency ethanol-diesel dual-fuel combustion: a comparison against conventional diesel combustion from low to full engine load. Fuel 230:440–451. https://doi.org/10.1016/j.fuel.2018.05.034

    Article  Google Scholar 

  19. Asad U, Divekar PS, Zheng M (2022) High efficiency ethanol–diesel dual-fuel combustion: Analyses of performance, emissions and thermal efficiency over the engine load range. Fuel 310:122397. https://doi.org/10.1016/j.fuel.2021.122397

    Article  Google Scholar 

  20. Han X, Divekar P, Reader G et al (2015) Active injection control for enabling clean combustion in ethanol-diesel dual-fuel mode. SAE Int J Engines 8:890–902. https://doi.org/10.4271/2015-01-0858

    Article  Google Scholar 

  21. Zhang Z, Liu R, Dong S et al (2022) Thermodynamic cycle characteristics of twin-VGT diesel engine and its control method at variable altitudes. Appl Therm Eng 211:118429. https://doi.org/10.1016/j.applthermaleng.2022.118429

    Article  Google Scholar 

  22. Singh M, Sandhu SS (2021) Effect of boost pressure on combustion, performance and emission characteristics of a multicylinder CRDI engine fueled with argemone biodiesel/diesel blends. Fuel 300:121001. https://doi.org/10.1016/j.fuel.2021.121001

    Article  Google Scholar 

  23. Benajes J, Molina S, García JM, Novella R (2004) Influence of Boost Pressure and Injection Pressure on Combustion Process and Exhaust Emissions in a HD Diesel Engine. In: SAE Technical Papers

  24. Han S, Bae C (2012) The influence of fuel injection pressure and intake pressure on conventional and low temperature diesel combustion. In: SAE Technical Papers

  25. Krishnan SR, Srinivasan KK, Raihan MS (2016) The effect of injection parameters and boost pressure on diesel-propane dual fuel low temperature combustion in a single-cylinder research engine. Fuel 184:490–502. https://doi.org/10.1016/j.fuel.2016.07.042

    Article  Google Scholar 

  26. Colban WF, Miles PC, Oh S (2007) Effect of intake pressure on performance and emissions in an automotive diesel engine operating in low temperature combustion regimes. In: SAE Technical Papers

  27. Yan J, Gao S, Zhao W, Lee TH (2021) Study of combustion and emission characteristics of a diesel engine fueled with diesel, butanol-diesel and hexanol-diesel mixtures under low intake pressure conditions. Energy Convers Manag 243:114273. https://doi.org/10.1016/j.enconman.2021.114273

    Article  Google Scholar 

  28. Tanin K V., Wickman DD, Montgomery DT, et al (1999) The influence of boost pressure on emissions and fuel consumption of a heavy-duty single-cylinder D.I. diesel engine. In: SAE Technical Papers

  29. Al-Hinti I, Samhouri M, Al-Ghandoor A, Sakhrieh A (2009) The effect of boost pressure on the performance characteristics of a diesel engine: a neuro-fuzzy approach. Appl Energy 86:113–121. https://doi.org/10.1016/j.apenergy.2008.04.015

    Article  Google Scholar 

  30. Shen M, Tuner M, Johansson B (2013) Close to stoichiometric partially premixed combustion -the benefit of ethanol in comparison to conventional fuels. In: SAE Technical Papers

  31. Woo C, Kook S, Hawkes ER (2016) Effect of intake air temperature and common-rail pressure on ethanol combustion in a single-cylinder light-duty diesel engine. Fuel 180:9–19. https://doi.org/10.1016/j.fuel.2016.04.005

    Article  Google Scholar 

  32. Baker DM, Assanis DN (1994) A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Appl Math Model 18:590–601. https://doi.org/10.1016/0307-904X(94)90317-4

    Article  MATH  Google Scholar 

  33. Rakopoulos CD, Rakopoulos DC, Kyritsis DC (2003) Development and validation of a comprehensive two-zone model for combustion and emissions formation in a DI diesel engine. Int J Energy Res 27:1221–1249. https://doi.org/10.1002/er.939

    Article  Google Scholar 

  34. Fonseca L, Olmeda P, Novella R, Valle RM (2020) Internal combustion engine heat transfer and wall temperature modeling: an overview. arch Comput Methods Eng 27:1661–1679. https://doi.org/10.1007/s11831-019-09361-9

    Article  Google Scholar 

  35. Benajes J, Martin J, Garcia A et al (2015) An ınvestigation of radiation heat transfer in a light-duty diesel engine. SAE Int J Engines 8:2119–2212. https://doi.org/10.4271/2015-24-2443

    Article  Google Scholar 

  36. Woschni G (1967) A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. In: SAE Technical Papers

  37. Özsezen AN (2022) Influence of pilot fuel injection and boost air pressure on combustion characteristics in a diesel engine fueled with ethanol-butan-2-ol-fossil diesel blends. Fuel 314:123081. https://doi.org/10.1016/j.fuel.2021.123081

    Article  Google Scholar 

  38. Olikara C, Borman GL (1975) A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines. In: SAE Prepr No:750468.

  39. Stephen R. Turns (2011) An Introduction to Combustion, Concepts and Applications, Third Edition

  40. Bruno TJ, Smith BL (2006) Enthalpy of combustion of fuels as a function of distillate cut: Application of an advanced distillation curve method. Energy Fuels 20:2109–2116. https://doi.org/10.1021/ef0602271

    Article  Google Scholar 

  41. Brunt MFJ, Rai H, Emtage AL (1998) The calculation of heat release energy from engine cylinder pressure data. In: SAE Technical Papers

  42. Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13:1–46

    Article  Google Scholar 

  43. Eriksson L (1998) Requirements for and a systematic method for identifying heat-release model parameters. In: SAE Technical Papers

  44. Vibe II (1970) Brennverlauf und Kreisprozess von Verbrennungsmotoren. VEB Verlag Tech

  45. Broch JT (1990) Principles of experimental frequency analysis

  46. Heywood J (1988) Internal combustion engine fundamentals

  47. Zhen X, Wang Y, Xu S et al (2012) The engine knock analysis—an overview. Appl Energy 92:628–636. https://doi.org/10.1016/j.apenergy.2011.11.079

    Article  Google Scholar 

  48. Wei Z, Zhang Y, Xia Q et al (2022) A simulation of ethanol substitution rate and EGR effect on combustion and emissions from a high-loaded diesel/ethanol dual-fuel engine. Fuel 310:122310. https://doi.org/10.1016/j.fuel.2021.122310

    Article  Google Scholar 

  49. Wang B, Pamminger M, Vojtech R, Wallner T (2020) Impact of injection strategies on combustion characteristics, efficiency and emissions of gasoline compression ignition operation in a heavy-duty multi-cylinder engine. Int J Engine Res 21:1426–1440. https://doi.org/10.1177/1468087418801660

    Article  Google Scholar 

  50. Bassoli C, Cornetti GM, Levizzari G (1977) Combustion Noise and Ignition Delay in Diesel Engines. SAE Prepr

  51. Zhang Z, Li J, Tian J et al (2022) Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends. Energy 249:123733. https://doi.org/10.1016/j.energy.2022.123733

    Article  Google Scholar 

  52. Eisazadeh-Far K, Moghaddas A, Al-Mulki J, Metghalchi H (2011) Laminar burning speeds of ethanol/air/diluent mixtures. Proc Combust Inst 33:1021–1027. https://doi.org/10.1016/j.proci.2010.05.105

    Article  Google Scholar 

  53. Gülder ÖL (1984) Correlations of laminar combustion data for alternative s.i. engine fuels. In: SAE Technical Papers

  54. Varea E, Modica V, Vandel A, Renou B (2012) Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: application to laminar spherical flames for methane, ethanol and isooctane/air mixtures. Combust Flame 159:577–590. https://doi.org/10.1016/j.combustflame.2011.09.002

    Article  Google Scholar 

  55. Van Lipzig JPJ, Nilsson EJK, De Goey LPH, Konnov AA (2011) Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel 90:2773–2781. https://doi.org/10.1016/j.fuel.2011.04.029

    Article  Google Scholar 

  56. Gülder ÖL (1982) Laminar burning velocities of methanol, ethanol and isooctane-air mixtures. Symp Combust 19:275–281. https://doi.org/10.1016/S0082-0784(82)80198-7

    Article  Google Scholar 

  57. Katoch A, Millán-Merino A, Kumar S (2018) Measurement of laminar burning velocity of ethanol-air mixtures at elevated temperatures. Fuel 231:37–44. https://doi.org/10.1016/j.fuel.2018.05.083

    Article  Google Scholar 

  58. Egolfopoulos FN, Du DX, Law CK (1992) A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. Symp Combust 24:833–841. https://doi.org/10.1016/S0082-0784(06)80101-3

    Article  Google Scholar 

  59. Aghsaee M, Nativel D, Bozkurt M et al (2015) Experimental study of the kinetics of ethanol pyrolysis and oxidation behind reflected shock waves and in laminar flames. Proc Combust Inst 35:393–400. https://doi.org/10.1016/j.proci.2014.05.063

    Article  Google Scholar 

  60. Liao SY, Jiang DM, Huang ZH et al (2007) Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Appl Therm Eng 27:374–380. https://doi.org/10.1016/j.applthermaleng.2006.07.026

    Article  Google Scholar 

  61. Raida MB, Hoetmer GJ, Konnov AA et al (2021) Laminar burning velocity measurements of ethanol+air and methanol+air flames at atmospheric and elevated pressures using a new Heat Flux setup. Combust Flame 230:11145. https://doi.org/10.1016/j.combustflame.2021.111435

    Article  Google Scholar 

  62. Chong CT, Hochgreb S (2011) Measurements of laminar flame speeds of liquid fuels: Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV). Proc Combust Inst 33:979–986. https://doi.org/10.1016/j.proci.2010.05.106

    Article  Google Scholar 

  63. Kumar K, Sung CJ (2007) Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combust Flame 151:209–224. https://doi.org/10.1016/j.combustflame.2007.05.002

    Article  Google Scholar 

  64. Wu F, Law CK (2013) An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers. Combust Flame 160:2744–2756. https://doi.org/10.1016/j.combustflame.2013.06.015

    Article  Google Scholar 

  65. Ge JC, Wu G, Choi NJ (2022) Comparative study of pilot–main injection timings and diesel/ethanol binary blends on combustion, emission and microstructure of particles emitted from diesel engines. Fuel 313:122658. https://doi.org/10.1016/j.fuel.2021.122658

    Article  Google Scholar 

  66. Xu X, Xia Q, Xu Y et al (2023) Simulation of combustion process in diesel/butanol dual fuel engine. Energy Sour Part A Recover Util Environ Eff 45:1485–1498. https://doi.org/10.1080/15567036.2023.2175934

    Article  Google Scholar 

  67. Zhang Z, Li J, Tian J et al (2021) Effects of different diesel-ethanol dual fuel ratio on performance and emission characteristics of diesel engine. Processes 9:1135. https://doi.org/10.3390/pr9071135

    Article  Google Scholar 

  68. He BQ, Shuai SJ, Wang JX, He H (2003) The effect of ethanol blended diesel fuels on emissions from a diesel engine. Atmos Environ 37:4965–4971. https://doi.org/10.1016/j.atmosenv.2003.08.029

    Article  Google Scholar 

  69. Nour M, Attia AMA, Nada SA (2019) Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Convers Manag 185:313–329. https://doi.org/10.1016/j.enconman.2019.01.105

    Article  Google Scholar 

  70. Figueroa-Labastida M, Luong MB, Badra J et al (2021) Experimental and computational studies of methanol and ethanol preignition behind reflected shock waves. Combust Flame 234:111621. https://doi.org/10.1016/j.combustflame.2021.111621

    Article  Google Scholar 

  71. Figueroa-Labastida M, Badra J, Elbaz AM, Farooq A (2018) Shock tube studies of ethanol preignition. Combust Flame 198:176–185. https://doi.org/10.1016/j.combustflame.2018.09.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ANÖ contributed to conceptualization, methodology, data processing visualization, formal analysis, writing—original draft.

Corresponding author

Correspondence to Ahmet Necati Özsezen.

Ethics declarations

Conflict of interest

The author declare that I have no competing interests.

Additional information

Technical Editor: Mario Eduardo Santos Martins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsezen, A.N. Effects of E-diesel on the combustion characteristics of a diesel engine operating at different boost pressures. J Braz. Soc. Mech. Sci. Eng. 45, 520 (2023). https://doi.org/10.1007/s40430-023-04401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04401-9

Keywords

Navigation