Skip to main content
Log in

Simultaneous prediction of the performance coefficients in a compact absorption heat transformer using new neural network configurations

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The calculation of the performance of absorption heat transformers (AHTs) depends on multiple variables. In this work, artificial neural network (ANN) models with new configurations were developed to simultaneously estimate the coefficient of performance (COP) and Carnot coefficient of performance (COPCarnot) of an AHT prototype. The variables used to train the models were: the inlet and outlet temperatures corresponding to the main components of the AHT. The output parameters to simulate were the COP and COPcarnot, which are important values to determine the performance and real efficiency based on the Carnot cycle, respectively. To find the appropriate model, it was necessary to explore learning algorithms, activation functions, and multilayers. The results show a good estimation of the output parameters through three configurations of the ANN model. However, based on the number of coefficients obtained during learning and the simultaneous simulation of two output parameters, a multilayer ANN model was proposed as the best configuration. Therefore, an architecture of four neurons in the first hidden layer and four neurons in the second hidden layer (08:04:04:02) was sufficient to reproduce the output parameters, achieving a value of R2 of 0.9265, 0.9573 and with a mean absolute percentage error of 2.41, 1.14% for COP and COPCarnot, respectively. In the three configurations, the use of hyperbolic tangent sigmoid activation function (TANSIG) in the hidden layers and the adjustment of the coefficients with the Levenberg–Marquardt learning algorithm obtained the best results. The influence of each of the variables selected for the ANN model was analyzed through a correlation matrix and a sensitivity analysis. Other experimental variables were added in the training of the ANN model to consult the impact caused during the simultaneous prediction of the performance coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig.13

Similar content being viewed by others

References

  1. International Energy Agency (2022) World Key energy statistics 2019. https://www.iea.org/world. Accessed 19 April 2022

  2. Peixer GF, Dutra SL, Calomeno RS, SA NM, Lang GB, Lozano JA, Barbosa JJR (2022) Influence of heat exchanger design on the thermal performance of a domestic wine cooler driven by a magnetic refrigeration system. An Acad Bras Ciênc. https://doi.org/10.1590/0001-3765202220200563

    Article  Google Scholar 

  3. Cudok F, Giannetti N, Ciganda JLC, Aoyama J, Babu P, Coronas A, Fujii T, Inoue N, Saito K, Yamaguchi S, Ziegler F (2021) Absorption heat transformer - state-of-the-art of industrial applications. Renew Sust Energ Rev 141:110757. https://doi.org/10.1016/j.rser.2021.110757

    Article  Google Scholar 

  4. Alonso D, Cachot T, Hornut JM (2003) Experimental study of an innovative absorption heat transformer using partially miscible working mixtures. Int J Therm Sci 42:631–638. https://doi.org/10.1016/S1290-0729(03)00028-0

    Article  Google Scholar 

  5. Rivera W, Huicochea A, Romero RJ, Lozano A (2018) Experimental assessment of double-absorption heat transformer operating with H2O/LiBr. Appl Therm Eng 132:432–440. https://doi.org/10.1016/j.applthermaleng.2017.12.117

    Article  Google Scholar 

  6. Saito K, Inoue N, Nakagawa Y, Fukusumi Y, Yamada H, Irie T (2015) Experimental and numerical performance evaluation of double-lift absorption heat transformer. Sci Technol Built Environ 21:312–322. https://doi.org/10.1080/23744731.2014.998937

    Article  Google Scholar 

  7. Cudok F, Ciganda JLC, Kononenko N, Drescher E (2017) Experimental results of an absorption heat transformer. In; 12th IEA Heat pump conference, Netherlands

  8. Sharma VK, Kumar EA (2018) Thermodynamic simulation of hydrogen based solid sorption heat transformer. Int J Therm Sci 125:74–80. https://doi.org/10.1016/j.ijthermalsci.2017.11.020

    Article  Google Scholar 

  9. Gómez-Arias E, Ibarra-Bahena J, Velazquez-Avelar L, Romero RJ, Rodríguez-Martínez A, Montiel-González M (2014) Temperature and concentration fields in a generator integrated to single stage heat transformer using Water/Carrol mixture. J Therm Sci 23:564–571. https://doi.org/10.1007/s11630-014-0742-2

    Article  Google Scholar 

  10. Chaiyat N, Kiatsiriroat T (2014) Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump. Case Stud Therm Eng 4:166–174. https://doi.org/10.1016/j.csite.2014.09.007

    Article  Google Scholar 

  11. Yari M, Salehi S, Mahmoudi SMS (2017) Three-objective optimization of water desalination systems based on the double-stage absorption heat transformers. Desalination 405:10–28. https://doi.org/10.1016/j.desal.2016.12.001

    Article  Google Scholar 

  12. Xu X, Liu J, Wang Y, Xu J, Bao J (2020) Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks. Appl Therm Eng 180:115914. https://doi.org/10.1016/j.applthermaleng.2020.115914

    Article  Google Scholar 

  13. Zhang N, Zou H, Zhang L, Puppala AJ, Liu S, Cai G (2020) A unified soil thermal conductivity model based on artificial neural network. Int J Therm Sci 155:106414. https://doi.org/10.1016/j.ijthermalsci.2020.106414

    Article  Google Scholar 

  14. Wang X, Yan X, Gao N, Chen G (2020) Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network. J Therm Sci 29:1504–1512. https://doi.org/10.1007/s11630-019-1158-9

    Article  Google Scholar 

  15. Moustafa EB, Hammad AH, Elsheikh AH (2022) A new optimized artificial neural network model to predict thermal efficiency and water yield of tubular solar still. Case Stud Therm Eng 30:101750. https://doi.org/10.1016/j.csite.2021.101750

    Article  Google Scholar 

  16. Mitra A, Majumdar A, Majumdar PK, Bannerjee D (2013) Predicting thermal resistance of cotton fabrics by artificial neural network model. Exp Therm Fluid Sci 50:172–177. https://doi.org/10.1016/j.expthermflusci.2013.06.006

    Article  Google Scholar 

  17. Corrales JLC, Cudok F (2020) Steady state measurements of an absorption heat transformer prototype. Repository. Technische Universität Berlin

    Google Scholar 

  18. Morales LI, Juárez-Romero D, Siqueiros J, Torres-Merino J (2013) Pre-startup proofs in an absorption heat transformer for water purification with compact components. In: ISES Solar World Congress, Energy Procedia

  19. Cengel YA, Cimbala JM (2006) Fluid mechanics: fundamentals and applications, 1st edn. McGraw-Hill, New York

    Google Scholar 

  20. Abrahamsson K, Jernqvist Å (1993) Carnot comparison of multi-temperature level absorption heat cycles. Int J Refrig 16:240–246. https://doi.org/10.1016/0140-7007(93)90076-K

    Article  Google Scholar 

  21. Horuz I, Kurt B (2010) Absorption heat transformers and an industrial application. Renew Energy 35:2175–2181. https://doi.org/10.1016/j.renene.2010.02.025

    Article  Google Scholar 

  22. Mohanraj M, Jayaraj S, Muraleedharan C (2015) Applications of artificial neural networks for thermal analysis of heat exchangers: a review. Int J Therm Sci 90:150–172. https://doi.org/10.1016/j.ijthermalsci.2014.11.030

    Article  Google Scholar 

  23. Beale MH, Hagan MT, Demuth HB (1992) Neural network toolbox user’s guide, vol 103. The MathWorks Inc

    Google Scholar 

  24. Feng YQ, Liu YZ, Wang X, He ZX, Hung TC, Wang Q, Xi H (2020) Performance prediction and optimization of an organic Rankine cycle (ORC) for waste heat recovery using back propagation neural network. Energy Convers Manag 226:113552. https://doi.org/10.1016/j.enconman.2020.113552

    Article  Google Scholar 

  25. Sheskin DJ (2000) Handbook of parametric and nonparametric statistical procedures, 2nd edn. CHAPMAN & HALL/CRC, Boca Raton

    MATH  Google Scholar 

  26. Lind DA, Mason RD, Marchal WG (2001) Estadística para administración y economía, 3a edn. Irwin McGraw Hill

    Google Scholar 

  27. Martinez-Martinez E, Escobedo-Trujillo AB, Colorado D, Morales LI, Huicochea A, Hernández JA, Siqueiros J (2017) Criteria for improving the traditional artificial neural network methodology applied to predict COP for a heat transformer. Desalin Water Treat 73:90–100. https://doi.org/10.5004/dwt.2017.20357

    Article  Google Scholar 

  28. Fan YV, Klemeš JJ, Lee CT, Tan RR (2021) Demographic and socio-economic factors including sustainability related indexes in waste generation and recovery. Energy Sourc Part A: Recover Utilization Environ Eff. https://doi.org/10.1080/15567036.2021.1974610

    Article  Google Scholar 

  29. Garson GD (1991) Interpreting neural-network connection weights. AI Expert 6:47–51

    Google Scholar 

  30. Esfe MH, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, Akbari M (2015) Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf 67:46–50. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.015

    Article  Google Scholar 

  31. Dhande DY, Choudhari CS, Gaikwad DP, Dahe KB (2022) Development of artificial neural network to predict the performance of spark ignition engine fuelled with waste pomegranate ethanol blends. Inf Process Agric. https://doi.org/10.1016/j.inpa.2022.05.001

    Article  Google Scholar 

  32. Yaïci W, Entchev E (2014) Performance prediction of a solar thermal energy system using artificial neural networks. Appl Therm Eng 73:1348–1359. https://doi.org/10.1016/j.applthermaleng.2014.07.040

    Article  Google Scholar 

  33. Song J, Chen Y, Wu X, Ruan S, Zhang Z (2021) A novel approach for energy efficiency prediction of various natural draft wet cooling towers using ANN. J Therm Sci 30:859–868. https://doi.org/10.1007/s11630-020-1296-0

    Article  Google Scholar 

  34. Muralidharan K, Vasudevan D (2015) Applications of artificial neural networks in prediction of performance, emission and combustion characteristics of variable compression ratio engine fuelled with waste cooking oil biodiesel. J Braz Soc Mech Sci Eng 37:915–928. https://doi.org/10.1007/s40430-014-0213-4

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding authors thank CONACYT-SNI for the support provided. All the members involved in this work thank the authors mentioned in [7] for sharing the experimental data, collected from the repository of the Technische Universität Berlin.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Conde-Gutiérrez or D. Colorado.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Guilherme Ribeiro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Weighting and bias coefficients produced from the ANN model for the prediction of the COP.

Number of neurons (s)

\({\text{Wi}}\)

\({\text{Wo}}\)

Bias

Variable

Output layer (l = 1)

 

\(T_{1}\)

(k = 1)

\(T_{2}\) (k = 2)

\(T_{3}\)

(k = 3)

\(T_{4}\)

(k = 4)

\(T_{5}\)

(k = 5)

\(T_{6}\)

(k = 6)

\(T_{7}\)

(k = 7)

\(T_{8}\)

(k = 8)

\(Wo_{1,s}\)

\(b1_{\left( s \right)}\)

\(b2_{\left( l \right)}\)

1

− 2.1331

− 0.4083

− 0.7737

0.7099

2.3708

2.1206

0.7128

1.8999

0.0181

0.6232

0.5970

2

0.2441

− 1.3668

− 2.0000

2.0153

− 0.9345

− 1.8978

− 0.4147

2.3316

0.0196

− 0.6881

 

3

− 0.9422

0.0293

0.3891

0.4074

− 2.9774

1.0543

2.4282

1.5277

− 0.0635

− 0.9256

 

4

− 1.7725

− 2.3908

0.7713

1.4164

2.0856

− 1.3312

1.3290

0.1880

− 0.2312

− 0.3950

 

5

1.1707

0.5308

2.0106

1.5114

1.0232

0.6669

− 0.6753

− 3.2822

0.0064

− 1.3759

 

6

0.1900

− 2.7516

1.1800

0.9036

− 1.7018

0.8779

0.9966

− 1.9703

0.0056

2.8516

 

7

− 1.6872

1.7982

1.1574

1.9072

− 0.2321

− 0.4701

0.9764

2.1916

0.0681

− 5.6599

 

Weighting and bias coefficients produced from the ANN model for the prediction of the COPCarnot.

\({\text{Wi}}\)

\({\text{Wo}}\)

Bias

Number of neurons (s)

Variable

Output layer (l = 1)

 

\(T_{1}\)

(k = 1)

\(T_{2}\) (k = 2)

\(T_{3}\)

(k = 3)

\(T_{4}\)

(k = 4)

\(T_{5}\)

(k = 5)

\(T_{6}\)

(k = 6)

\(T_{7}\)

(k = 7)

\(T_{8}\)

(k = 8)

\(Wo_{1,s}\)

\(b1_{\left( s \right)}\)

\(b2_{\left( l \right)}\)

1

1.2221

0.9570

− 2.1169

− 1.1600

1.2064

2.6072

− 0.8197

− 0.7379

− 0.1288

− 2.2468

− 0.1578

2

− 1.0986

2.3541

1.9413

− 1.0455

1.7354

− 0.9605

− 0.5717

2.1373

− 0.2415

− 0.6347

 

3

− 2.2385

− 1.0154

0.2286

− 2.0534

0.9983

2.0025

− 1.0321

− 1.7013

0.0497

3.4225

 

4

− 0.3122

0.0743

2.4414

1.1720

− 1.8615

− 0.6122

− 0.8637

2.5789

0.0107

− 1.2252

 

5

− 2.3927

1.7122

1.3911

1.7826

− 0.5359

− 1.7792

− 1.7396

0.7528

− 0.6157

− 1.3462

 

6

− 1.7680

− 1.6591

1.5389

− 0.5904

1.2875

− 2.0185

0.1877

2.2252

− 0.3378

− 0.0802

 

7

− 0.1275

1.5380

− 2.9774

− 2.2634

0.2984

1.4155

1.9892

0.2671

0.1017

− 2.2307

 

Appendix 2

Weighting and bias coefficients produced from the ANN model for the simultaneous prediction of COP and COPCarnot.

\({\text{Wi}}\)

Wo

Number of neurons (s)

Variable

Output layer,

(\(l = 1\))

Output layer,

(\(l = 2\))

\(T_{1}\)

(k = 1)

\(T_{2}\) (k = 2)

\(T_{3}\)

(k = 3)

\(T_{4}\)

(k = 4)

\(T_{5}\)

(k = 5)

\(T_{6}\)

(k = 6)

\(T_{7}\)

(k = 7)

\(T_{8}\)

(k = 8)

\(b_{1\left( s \right)}\)

\({\text{Wo}}_{1,s}\)

\(b_{{2\left( {1,{\text{s}}} \right)}}\)

\({\text{Wo}}_{2,s}\)

\(b_{{2\left( {2,s} \right)}}\)

1

1.6747

− 0.5274

− 1.2592

2.0081

1.3907

− 2.5409

− 1.7215

− 2.2429

− 0.7503

0.8681

− 0.1336

0.2726

− 0.3537

2

− 1.9968

1.3322

0.3864

0.9460

0.6943

− 2.8574

− 0.0128

2.9998

1.6963

0.5568

 

0.3913

 

3

1.0649

1.8916

0.5598

1.1567

− 2.6749

0.7416

− 0.9553

− 3.1411

− 0.8227

− 0.0196

 

0.2331

 

4

− 2.9780

0.0266

− 1.4290

− 0.3328

− 1.3324

− 1.6011

1.3466

− 2.1245

5.9750

0.0486

 

− 0.0470

 

5

3.1788

− 0.7218

− 1.8047

0.4607

0.2179

− 2.1842

− 1.2756

− 2.3456

1.5401

− 0.1880

 

0.2781

 

6

1.7075

0.4295

2.1427

− 2.0244

0.5295

1.1132

2.6168

2.4397

− 4.9063

− 0.0085

 

0.1543

 

7

− 1.2740

− 2.8032

0.3272

1.2777

− 1.1816

− 1.7473

− 2.1240

2.4022

2.4572

− 0.0075

 

− 0.0177

 

8

2.5366

− 1.4103

1.1171

2.7357

− 1.5617

− 1.1458

− 0.7763

− 1.2546

− 0.8566

− 0.1683

 

− 0.0054

 

9

2.3108

0.3890

2.5240

− 1.3345

0.0620

− 2.5060

1.8813

0.4995

− 1.3727

− 0.3583

 

− 0.1582

 

10

− 1.2346

1.5734

2.6753

− 2.4446

0.2297

1.2647

1.8880

− 0.8900

− 2.6726

0.3199

 

0.0300

 

11

1.7013

− 2.2208

− 0.4385

− 2.1839

0.2297

− 1.4996

− 2.2048

0.3056

3.1038

1.1650

 

0.1081

 

12

− 1.0138

2.5953

− 2.7922

1.6915

− 0.9334

− 1.9297

− 1.3175

− 1.0216

0.6049

− 0.0304

 

− 0.4375

 

13

− 1.5880

− 0.6965

− 0.7669

3.1960

− 2.2016

1.6127

− 1.7808

0.5850

− 0.7899

0.4847

 

− 0.1436

 

14

0.4511

2.7091

− 0.2609

− 0.3156

2.2022

− 2.4428

− 1.6971

1.1723

0.0231

0.6328

 

0.1326

 

15

− 1.1389

2.1478

2.4430

0.6585

− 2.5051

0.9171

− 0.9272

2.4435

− 3.0446

1.0608

 

0.0156

 

16

1.8798

− 2.5119

2.3131

− 2.5288

1.2460

− 0.1742

0.3855

1.1100

1.4270

0.8586

 

0.6079

 

Appendix 3

Weighting and bias coefficients produced from the multilayer ANN model for the simultaneous prediction of COP and COPCarnot.

(s1)

\({\text{Wi}}\)

\({\text{Wo}}\)

LW

First hidden layer

Bias

(s2)

Second hidden layer

Bias

Output layers

Bias

\(T_{1}\)

(k = 1)

\(T_{2}\)(k = 2)

\(T_{3}\)

(k = 3)

\(T_{4}\)

(k = 4)

\(T_{5}\)

(k = 5)

\(T_{6}\)

(k = 6)

\(T_{7}\)

(k = 7)

\(T_{8}\)

(k = 8)

\(b_{{1\left( {\text{s}} \right)}}\)

\(s_{1} = 1\)

\(s_{1} = 2\)

\(s_{1} = 3\)

\(s_{1} = 4\)

\(b_{{2\left( {{\text{s}}2} \right)}}\)

\({\text{LW}}_{s3,1}\)

\({\text{LW}}_{s3,2}\)

\(b_{{3\left( {{\text{s}}3,1} \right)}}\)

\(b_{{3\left( {{\text{s}}3,2} \right)}}\)

1

1.9887

0.7834

1.0414

− 1.7030

1.0367

1.2334

− 1.5372

1.9950

− 3.5116

1

1.5136

1.2618

0.4001

− 0.1371

− 2.2623

− 0.0821

− 0.0838

− 0.7702

− 0.1314

2

− 1.0213

0.2249

0.4104

0.7932

1.3645

1.9303

2.4361

1.6075

− 4.5641

2

− 1.0002

1.0356

0.6990

− 1.0029

0.8045

− 0.0059

− 0.1786

  

3

0.0483

− 2.0885

− 1.3767

0.5722

− 2.0218

− 1.8054

− 1.5816

0.7019

4.2296

3

0.4918

− 0.2132

0.6851

− 1.1641

1.2014

− 0.0076

0.1381

  

4

2.0201

− 0.0463

− 2.3453

0.6314

0.2979

1.6527

− 2.6486

− 0.5006

0.3462

4

0.6300

1.0686

0.9701

1.3983

2.2163

1.1926

0.7475

  

Appendix 4

Weighting and bias coefficients produced from the ANN model contemplating twelve input variables for the simultaneous prediction of COP and COPCarnot.

Number of neurons (s)

\({\text{Wi}}\)

Wo

Variable

Output layer,

(\(l = 1\))

Output layer,

(\(l = 2\))

\(T_{1}\)

(k = 1)

\(T_{2}\)

(k = 2)

\(T_{3}\)

(k = 3)

\(T_{4}\)

(k = 4)

\(T_{5}\)

(k = 5)

\(T_{6}\)

(k = 6)

\(T_{7}\)

(k = 7)

\(T_{8}\)

(k = 8)

\(P_{1}\)

(k = 9)

\(P_{2}\)

(k = 10)

\(X_{1}\)

(k = 11)

\(X_{2}\)

(k = 12)

\(b_{1\left( s \right)}\)

\({\text{Wo}}_{1,s}\)

\(b_{{2\left( {1,{\text{s}}} \right)}}\)

\({\text{Wo}}_{2,s}\)

\(b_{{2\left( {2,s} \right)}}\)

1

− 1.6138

− 2.1650

0.7990

− 1.4483

0.9342

− 1.6123

− 0.5266

− 0.4265

− 1.6099

− 0.8184

1.9543

0.4207

4.6934

0.1277

− 0.6248

− 0.0595

0.0530

2

1.3654

− 1.2615

− 1.9379

− 1.3412

1.8591

− 0.6898

0.8984

− 2.1796

− 0.1650

0.3952

− 0.3812

1.3437

0.8860

0.1213

 

0.0473

 

3

0.2644

1.2766

1.5811

1.1820

0.3581

0.0344

− 0.5857

− 1.8320

− 0.4457

2.6837

1.0152

0.9165

− 2.8019

0.2323

 

− 0.0504

 

4

− 0.3920

− 1.7987

0.8456

− 0.7068

0.7527

− 0.5965

− 1.3426

0.2267

2.4616

0.3208

1.1875

0.5110

0.6268

0.1933

 

− 0.3198

 

5

− 1.5465

− 1.8394

0.5179

1.6199

0.9502

− 0.3752

1.6878

− 0.0382

− 1.0893

− 0.9167

1.6557

− 1.0934

− 1.7476

− 0.9754

 

− 0.8633

 

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conde-Gutiérrez, R.A., Colorado, D., Gonzalez-Flores, P.B. et al. Simultaneous prediction of the performance coefficients in a compact absorption heat transformer using new neural network configurations. J Braz. Soc. Mech. Sci. Eng. 45, 426 (2023). https://doi.org/10.1007/s40430-023-04329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04329-0

Keywords

Navigation