Skip to main content
Log in

Adaptive impedance control for the hydraulic manipulator under the uncertain environment

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The contact control of the n-DOF hydraulic manipulators is challenged by the uncertain environment with unknown stiffness and location. Only by a traditional impedance control can obtain satisfying force/position tracking performance. To this end, adaptive impedance control with force sensor-less is presented for the n-DOF hydraulic manipulator. The overall control scheme includes two loops: the inner loop replans a nonlinear model-based controller towards the end-effector position to compensate for the nonlinear dynamic characteristics of the hydraulic manipulator, such that a high-precision trajectory tracking can be achieved; in the outer loop, a force error compensation based on model reference, adaptive control is added to the classical position-based impedance control, such that the impedance control performance can be accommodated to the uncertain environment. The estimation of the end-effector force is designed in terms of the inverse dynamic model of the manipulator, together with the pressure feedback of the hydraulic drive system. The experimental results show that compared with classical impedance control, the proposed approach improves the force tracking accuracy by approximately 50% and has higher stability when the environment stiffness and location change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References.

  1. Kamezaki M, Iwata H, Sugano S (2017) Condition-based less-error data selection for robust and accurate mass measurement in large-scale hydraulic manipulators. IEEE Trans Instrum Meas 66(7):1820–1830. https://doi.org/10.1109/TIM.2017.2669759

    Article  Google Scholar 

  2. Mattila J, Koivumaki J, Caldwell DG et al (2017) A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Trans Mechatron 22(2):669–680. https://doi.org/10.1109/TMECH.2017.2668604

    Article  Google Scholar 

  3. Wang Y, Wang X, Li C et al (2022) Research on position/force hybrid control of an FFHD robot with EHS-actuators. J Braz Soc Mech Sci Eng 44(5):1–18. https://doi.org/10.1007/s40430-022-03505-y

    Article  Google Scholar 

  4. Brahmi B, Driscoll M, El Bojairami IK et al (2021) Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. ISA Trans 108:381–392. https://doi.org/10.1016/j.isatra.2020.08.036

    Article  Google Scholar 

  5. Saldarriaga C, Chakraborty N, Kao I (2021) Damping selection for cartesian impedance control with dynamic response modulation. IEEE Trans Rob. https://doi.org/10.1109/TRO.2021.3116855

    Article  Google Scholar 

  6. Lee W, Yoo S, Nam S et al (2020) Passivity-based robust compliance control of electro-hydraulic robot manipulators with joint angle limit. IEEE Robot Autom Lett 5(2):3190–3197. https://doi.org/10.1109/LRA.2020.2975724

    Article  Google Scholar 

  7. Li Z, Huang H, Song X et al (2021) A fuzzy adaptive admittance controller for force tracking in an uncertain contact environment. IET Control Theory Appl 15:2158–2170. https://doi.org/10.1049/cth2.12175

    Article  Google Scholar 

  8. Zhang X, Khamesee MB (2017) Adaptive force tracking control of a magnetically navigated microrobot in uncertain environment. IEEE/ASME Trans Mechatron 22(4):1644–1651. https://doi.org/10.1109/TMECH.2017.2705523

    Article  Google Scholar 

  9. Roveda L, Iannacci N, Vicentini F et al (2016) Optimal impedance force-tracking control design with impact formulation for interaction tasks. IEEE Robot Autom Lett 1(1):130–136. https://doi.org/10.1109/LRA.2015.2508061

    Article  Google Scholar 

  10. Lin Y, Chen Z, Yao B (2021) Unified motion/force/impedance control for manipulators in unknown contact environments based on robust model-reaching approach. IEEE/ASME Trans Mechatron 26(4):1905–1913. https://doi.org/10.1109/TMECH.2021.3081594

    Article  Google Scholar 

  11. Duan J, Gan Y, Chen M et al (2018) Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot Auton Syst 102:54–65. https://doi.org/10.1016/j.robot.2018.01.009

    Article  Google Scholar 

  12. Liu X, Ge SS, Zhao F et al (2020) Optimized interaction control for robot manipulator interacting with flexible environment. IEEE/ASME Trans Mechatron 26(6):2888–2898. https://doi.org/10.1109/TMECH.2020.3047919

    Article  Google Scholar 

  13. Liu X, Ge SS, Zhao F et al (2020) Optimized impedance adaptation of robot manipulator interacting with unknown environment. IEEE Trans Control Syst Technol 29(1):411–419. https://doi.org/10.1109/TCST.2020.2971944

    Article  Google Scholar 

  14. Aghili F (2019) Robust impedance-matching of manipulators interacting with uncertain environments: application to task verification of the space station’s dexterous manipulator. IEEE/ASME Trans Mechatron 24(4):1565–1576. https://doi.org/10.1109/TMECH.2019.2928281

    Article  MathSciNet  Google Scholar 

  15. Cheng M, Sun B, Ding R et al (2023) A multi-mode electronic load sensing control scheme with power limitation and pressure cut-off for mobile machinery. J Mech Eng 36:29. https://doi.org/10.1186/s10033-023-00861-1

    Article  Google Scholar 

  16. Koivumäki J, Zhu W-H, Mattila J (2019) Energy-efficient and high-precision control of hydraulic robots. Control Eng Pract 85:176–193. https://doi.org/10.1016/j.conengprac.2018.12.013

    Article  Google Scholar 

  17. Hulttinen L, Koivumäki J, Mattila J. Parameter identification for model-based control of hydraulically actuated open-chain manipulators. Fluid Power Systems Technology 2019;59339:V001T01A026. https://doi.org/10.1115/FPMC2019-1656.

  18. Zhang F, Zhang J, Cheng M et al (2022) A flow-limited rate control scheme for the master–slave hydraulic manipulator. IEEE Trans Industr Electron 69(5):4988–4998. https://doi.org/10.1109/TIE.2021.3084175

    Article  Google Scholar 

  19. Huang Y, Pool DM, Stroosma O et al (2019) Long-stroke hydraulic robot motion control with incremental nonlinear dynamic inversion. IEEE/ASME Trans Mechatron 24(1):304–314. https://doi.org/10.1109/TMECH.2019.2891358

    Article  Google Scholar 

  20. Feng H, Yin C, Ma W et al (2019) Parameters identification and trajectory control for a hydraulic system. ISA Trans 92:228–240. https://doi.org/10.1016/j.isatra.2019.02.022

    Article  Google Scholar 

  21. Li L, Xie L, Luo X et al (2019) Compliance control using hydraulic heavy-duty manipulator. IEEE Trans Industr Inf 15(2):1193–1201. https://doi.org/10.1109/TII.2018.2873256

    Article  Google Scholar 

  22. Koivumäki J, Mattila J (2015) Stability-guaranteed force-sensorless contact force/motion control of heavy-duty hydraulic manipulators. IEEE Trans Rob 31(4):918–935. https://doi.org/10.1109/TRO.2015.2441492

    Article  Google Scholar 

  23. Koivumäki J, Mattila J (2016) Stability-guaranteed impedance control of hydraulic robotic manipulators. IEEE/ASME Trans Mechatron 22(2):601–612. https://doi.org/10.1109/TMECH.2016.2618912

    Article  Google Scholar 

  24. Boaventura T, Buchli J, Semini C et al (2017) Model-based hydraulic impedance control for dynamic robots. IEEE Trans Rob 31(6):1324–1336. https://doi.org/10.1109/TRO.2015.2482061

    Article  Google Scholar 

  25. Ba K-X, Ma G-L, Yu B et al (2020) A nonlinear model-based variable impedance parameters control for position-based impedance control system of hydraulic drive unit. Int J Control Autom Syst 18(7):1806–1817. https://doi.org/10.1007/s12555-019-0151-0

    Article  Google Scholar 

  26. Lee W, Min JK, Wan KC (2020) Asymptotically stable disturbance observer-based compliance control of electrohydrostatic actuators. IEEE/ASME Trans Mechatron 25(1):195–206. https://doi.org/10.1109/TMECH.2019.2958490

    Article  Google Scholar 

  27. Yoo S, Lee W, Chung WK (2019) Impedance control of hydraulic actuation systems with inherent backdrivability. IEEE/ASME Trans Mechatron 24(5):1921–1930. https://doi.org/10.1109/TMECH.2019.2932132

    Article  Google Scholar 

  28. Truong HVA, Trinh HA, Ahn KK (2020) Safety operation of n-DOF serial hydraulic manipulator in constrained motion with consideration of contact-loss fault. Appl Sci 10(22):8107. https://doi.org/10.3390/app10228107

    Article  Google Scholar 

  29. Cheng M, Han Z, Ding R et al (2021) Development of a redundant anthropomorphic hydraulically actuated manipulator with a roll-pitch-yaw spherical wrist. Front Mech Eng 16(4):698–710. https://doi.org/10.1007/s11465-021-0646-2

    Article  Google Scholar 

  30. Zhang D, Wei B (2017) A review on model reference adaptive control of robotic manipulators. Annu Rev Control 43:188–198. https://doi.org/10.1016/j.arcontrol.2017.02.002

    Article  Google Scholar 

  31. Luo S, Cheng M, Ding R et al (2022) Human–robot shared control based on locally weighted intent prediction for a teleoperated hydraulic manipulator system. IEEE/ASME Trans Mechatron. https://doi.org/10.1109/TMECH.2022.3157852

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. U21A20124 and 52175050, Key R&D program of Zhejiang Province under Grant No. 2022C01039, Jiangxi Provincial Natural Science Foundation under Grant No. 20212ACB214004.

Funding

National Natural Science Foundation of China, U21A20124, Bing Xu, 52175050, Ruqi Ding, Key R&D program of Zhejiang Province, 2022C01039, Bing Xu, Jiangxi Provincial Natural Science Foundation, 20212ACB214004, Ruqi Ding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Cheng.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Technical Editor: Rogério Sales Gonçalves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Rq., Wang, Jh., Cheng, M. et al. Adaptive impedance control for the hydraulic manipulator under the uncertain environment. J Braz. Soc. Mech. Sci. Eng. 45, 437 (2023). https://doi.org/10.1007/s40430-023-04323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04323-6

Keywords

Navigation