Skip to main content

Advertisement

Log in

Piezoelectric energy harvesting in graded elastic metastructures using continuous and segmented electrodes

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, we investigate piezoelectric energy harvesting from localized vibration modes of a hybrid metamaterial beam. Undamped spring–mass resonators with graded properties are periodically attached to a host beam, which is also completely covered by piezoceramic layers that are employed to harvest electrical energy from mechanical vibrations. The vibration energy trapped over a certain spatial region of a graded metastructure and over a relatively wide frequency range is an opportunity for wideband piezoelectric energy harvesting. The cancelation of electrical output from localized modes, however, has not been discussed in the literature. Therefore, the numerical exercises in this paper explore piezoelectric energy harvesting from localized vibration modes of a graded metastructure considering both continuous and segmented configurations of the electrodes covering the piezoelectric layers. Compared to the continuous electrodes case, configurations with segmented electrodes provide enhanced energy harvesting performance for specific localized modes and also over the entire range of frequencies where localized modes occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158(2):377–382. https://doi.org/10.1016/0022-460X(92)90059-7

    Article  Google Scholar 

  2. Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025. https://doi.org/10.1103/PhysRevLett.71.2022

    Article  Google Scholar 

  3. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736. https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  4. Yu D, Liu Y, Zhao H, Wang G, Qiu J (2006) Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B Condens. Matter Mater. Phys. 73(6):1–5. https://doi.org/10.1103/PhysRevB.73.064301

    Article  Google Scholar 

  5. Yu D, Liu Y, Wang G, Zhao H, Qiu J (2006) Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J Appl Phys 100(12):124901. https://doi.org/10.1063/1.2400803

    Article  Google Scholar 

  6. Sun H, Du X, Pai PF (2010) Theory of metamaterial beams for broadband vibration absorption. J Intell Mater Syst Struct 21(11):1085–1101. https://doi.org/10.1177/1045389X10375637

    Article  Google Scholar 

  7. Sugino C, Leadenham S, Ruzzene M, Erturk A (2017) An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Mater Struct 26(5):55029. https://doi.org/10.1088/1361-665X/aa6671

    Article  Google Scholar 

  8. Cetinkaya C (1999) Localization of longitudinal waves in bi-periodic elastic structures with disorder. J Sound Vib 221(1):49–66. https://doi.org/10.1006/jsvi.1998.1971

    Article  Google Scholar 

  9. Thorp O, Ruzzene M, Baz A (2001) Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater Struct 10(5):979–989. https://doi.org/10.1088/0964-1726/10/5/314

    Article  Google Scholar 

  10. Sugino C, Xia Y, Leadenham S, Ruzzene M, Erturk A (2017) A general theory for bandgap estimation in locally resonant metastructures. J Sound Vib. https://doi.org/10.1016/j.jsv.2017.06.004

    Article  Google Scholar 

  11. Thomes RL, Mosquera-Sanchez JA, De Marqui C (2021) Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials. J Sound Vib 512:116369. https://doi.org/10.1016/j.jsv.2021.116369

    Article  Google Scholar 

  12. Hodges CH (1982) Confinement of vibration by structural irregularity. J Sound Vib 82(3):411–424. https://doi.org/10.1016/S0022-460X(82)80022-9

    Article  Google Scholar 

  13. Pierre C, Dowell EH (1987) Localization of vibrations by structural irregularity. J Sound Vib 114(3):549–564. https://doi.org/10.1016/S0022-460X(87)80023-8

    Article  Google Scholar 

  14. Lin YK, Yang JN (1974) Free vibration of a disordered periodic beam. J. Appl. Mech. Tras. ASME 41(2):383–391. https://doi.org/10.1115/1.3423298

    Article  MATH  Google Scholar 

  15. Pierre C, Tang DM, Dowell EH (1987) Localized vibrations of disordered multispan beams—theory and experiment. AIAA J 25(9):1249–1257. https://doi.org/10.2514/3.9774

    Article  Google Scholar 

  16. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109(5):1492–1505. https://doi.org/10.1103/PhysRev.109.1492

    Article  Google Scholar 

  17. Zhu J, Chen Y, Zhu X, Garcia-Vidal FJ, Yin X, Zhang W, Zhang X (2013) Acoustic rainbow trapping. Sci Rep 3(medium I):1–6. https://doi.org/10.1038/srep01728

    Article  Google Scholar 

  18. Ni X, Wu Y, Chen ZG, Zheng LY, Xu YL, Nayar P, Liu XP, Lu MH, Chen YF (2014) Acoustic rainbow trapping by coiling up space. Sci Rep 4:7038. https://doi.org/10.1038/srep07038

    Article  Google Scholar 

  19. Jiménez N, Romero-García V, Pagneux V, Groby JP (2017) Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-13706-4. arXiv:1708.03343

    Article  Google Scholar 

  20. Colombi A, Colquitt D, Roux P, Guenneau S, Craster RV (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6(Umr 7249):1–6. https://doi.org/10.1038/srep27717

    Article  Google Scholar 

  21. Cardella D, Celli P, Gonella S (2016) Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap. Smart Mater. Struct. https://doi.org/10.1088/0964-1726/25/8/085017. arXiv:1603.01604

  22. Tsakmakidis KL, Boardman AD, Hess O (2007) Trapped rainbow storage of light in metamaterials. Nature 450(7168):397–401. https://doi.org/10.1038/nature06285

    Article  Google Scholar 

  23. Hu G, Austin ACM, Sorokin V, Tang L (2021) Metamaterial beam with graded local resonators for broadband vibration suppression. Mech Syst Signal Process 146:106982. https://doi.org/10.1016/j.ymssp.2020.106982

    Article  Google Scholar 

  24. Meng H, Chronopoulos D, Fabro AT, Elmadih W, Maskery I (2020) Rainbow metamaterials for broadband multi-frequency vibration attenuation: numerical analysis and experimental validation. J Sound Vib 465:115005. https://doi.org/10.1016/j.jsv.2019.115005

    Article  Google Scholar 

  25. Beli D, Fabro AT, Ruzzene M, Arruda JRF (2019) Wave attenuation and trapping in 3d printed cantilever-in-mass metamaterials with spatially correlated variability. Sci Rep 9:5617. https://doi.org/10.1038/s41598-019-41999-0

    Article  Google Scholar 

  26. Alshaqaq M, Erturk A (2020) Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting. Smart Mater Struct 30(1):015029. https://doi.org/10.1088/1361-665x/abc7fa

    Article  Google Scholar 

  27. Chaplain GJ, Pajer D, Ponti JMD, Craster RV (2020) Delineating rainbow reflection and trapping with applications for energy harvesting. New J Phys 22(6):063024. https://doi.org/10.1088/1367-2630/ab8cae

    Article  Google Scholar 

  28. Ponti JMD, Colombi A, Ardito R, Braghin F, Corigliano A, Craster RV (2020) Graded elastic metasurface for enhanced energy harvesting. New J Phys 22(1):013013. https://doi.org/10.1088/1367-2630/ab6062

    Article  Google Scholar 

  29. Meirovitch L (1997) Principles and Techniques of Vibrations, 1st edn. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  30. Celli P, Yousefzadeh B, Daraio C, Gonella S (2019) Bandgap widening by disorder in rainbow metamaterials. Appl. Phys. Lett. https://doi.org/10.1063/1.5081916. arXiv:1703.08522

  31. Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J. Vib. Acoust. doi 10(1115/1):2981094

    Google Scholar 

  32. De Marqui C, Tan D, Erturk A (2018) On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow. J Fluids Struct 82:492–504. https://doi.org/10.1016/j.jfluidstructs.2018.07.020

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by CNPq [Grant Nos. 433456/2018-3 and 308690/2019-2] and by the Sao Paulo Research Foundation (FAPESP) [Grant Nos. 2018/15894-0 and 2021/09473-5].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Camila Sanches Schimidt, Vagner Candido de Sousa or Carlos De Marqui Junior.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schimidt, C.S., de Sousa, V.C. & De Marqui Junior, C. Piezoelectric energy harvesting in graded elastic metastructures using continuous and segmented electrodes. J Braz. Soc. Mech. Sci. Eng. 45, 329 (2023). https://doi.org/10.1007/s40430-023-04248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04248-0

Keywords

Navigation