Skip to main content
Log in

Experimental observation of ethanol–air premixed flames propagating inside a closed tube with high aspect ratio

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present article aims to experimentally observe the flame propagation of ethanol–air mixtures in a tube closed at both ends with an aspect ratio of 27.68. The mixtures were prepared with equivalence ratios ranging from 0.8 to 1.1. The tests were performed for initial pressures of 20, 40, and 60 kPa. The phenomenon of flame front inversion was observed in all experiments. This phenomenon is also known as tulip flame. It was also observed that the flame front inverted several times at the equivalence ratios of 1.0 and 1.1. After the initial deceleration, the velocity oscillated with a high amplitude at these equivalence ratios. An analysis of the available experimental data was performed to better understand the conditions that allow the flame velocity oscillations to occur. It was found that these oscillations manifest when the following conditions are met: (a) closed channels, (b) sufficiently high laminar flame velocity and (c) sufficiently high aspect ratio. Moreover, this phenomenon is coupled with pressure waves that develop inside the duct. The relationship between the distance for the formation of the flattened flame front and the laminar flame velocity was used to define a characteristic time that correlates with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio

c p :

Heat capacity at constant pressure (J/kg K)

d :

Tube diameter (m)

d f :

Distance of flattened flame formation (m)

E a :

Activation energy (J/mol)

t flat :

Characteristic time (s)

L :

Tube or duct length (m)

p :

Pressure (kPa)

p :

Pressure increase (kPa)

p v :

Pressure after vacuum (kPa)

p F,i :

Apparent fuel pressure (kPa)

p F :

Real fuel pressure (kPa)

p air :

Real air pressure (kPa)

R :

Universal gas constant (J/mol K)

s L :

Laminar burning velocity (m/s)

∆s L :

Relative increase of laminar flame velocity (%)

t flat :

Characteristic time for flattened flame formation (s)

T b :

Adiabatic flame temperature

V :

Axial velocity of the flame tip (m/s)

x :

Axial coordinate position (m)

ϕ :

Equivalence ratio

ω :

Uncertainty of a physical quantity

λ :

Thermal conductivity (W/m)

b :

Conditions in the burned gases

h :

Hydraulic diameter

References

  1. Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658. https://doi.org/10.1007/s11367-012-0465-0

    Article  Google Scholar 

  2. Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod Biorefining 5:519–532. https://doi.org/10.1002/bbb.289

    Article  Google Scholar 

  3. Wang L, Quiceno R, Price C, Malpas R, Woods J (2014) Economic and GHG emissions analyses for sugarcane ethanol in Brazil: looking forward. Renew Sustain Energy Rev 40:571–582. https://doi.org/10.1016/j.rser.2014.07.212

    Article  Google Scholar 

  4. Pereira LG, Cavalett O, Bonomi A, Zhang Y, Warner E, Chum HL (2019) Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat. Renew Sustain Energy Rev 110:1–12. https://doi.org/10.1016/j.rser.2019.04.043

    Article  Google Scholar 

  5. Coronado CJR, Carvalho JA, Andrade JC, Mendiburu AZ, Cortez EV, Carvalho FS et al (2014) Flammability limits of hydrated and anhydrous ethanol at reduced pressures in aeronautical applications. J Hazard Mater 280:174–184. https://doi.org/10.1016/j.jhazmat.2014.07.063

    Article  Google Scholar 

  6. Coronado C, Carvalho JA, Andrade JC, Cortez EV, Carvalho FS, Santos JC et al (2012) Flammability limits: a review with emphasis on ethanol for aeronautical applications and description of the experimental procedure. J Hazard Mater 241–242:32–54. https://doi.org/10.1016/j.jhazmat.2012.09.035

    Article  Google Scholar 

  7. Mendiburu Zevallos AA, Ciccarelli G, Carvalho JA Jr (2018) DDT limits of ethanol–air in an obstacles-filled tube. Combust Sci Technol 00:1–16. https://doi.org/10.1080/00102202.2018.1477770

    Article  Google Scholar 

  8. Valiev DM, Akkerman V, Kuznetsov M, Eriksson LE, Law CK, Bychkov V (2013) Influence of gas compression on flame acceleration in the early stage of burning in tubes. Combust Flame 160:97–111. https://doi.org/10.1016/j.combustflame.2012.09.002

    Article  Google Scholar 

  9. De AG, De AC, Costa FDS (2015) Flameless compact combustion system for burning hydrous ethanol. Energy 89:158–167. https://doi.org/10.1016/j.energy.2015.07.049

    Article  Google Scholar 

  10. Gárzon Lama LFM, Pizzuti L, Sotton J, Martins CA (2021) Experimental investigation of hydrous ethanol/air flame front instabilities at elevated temperature and pressures. Fuel. https://doi.org/10.1016/j.fuel.2020.119555

    Article  Google Scholar 

  11. Clanet C, Searby G (1996) On the tulip flame phenomenon. Combust Flame 105:225

    Article  Google Scholar 

  12. Gonzalez M, Borghi R, Saouab A (1992) Interaction of a flame front with its self-generated flow in an enclosure: the “tulip flame” phenomenon. Combust Flame 88:201–220. https://doi.org/10.1016/0010-2180(92)90052-Q

    Article  Google Scholar 

  13. Konnov AA, Dyakov IV (2005) Measurement of propagation speeds in adiabatic cellular premixed flames of CH4 + O2 + CO2. Exp Therm Fluid Sci 29:901–907. https://doi.org/10.1016/j.expthermflusci.2005.01.005

    Article  Google Scholar 

  14. Jiang L, Gu C, Zhou G, Li F, Wang Q (2020) Cellular instabilities of n-butane/air flat flames probing by PLIF-OH and PLIF-CH2O laser diagnosis. Exp Therm Fluid Sci. https://doi.org/10.1016/j.expthermflusci.2020.110155

    Article  Google Scholar 

  15. Ponizy B, Claverie A, Veyssière B (2014) Tulip flame—the mechanism of flame front inversion. Combust Flame 161:3051–3062. https://doi.org/10.1016/j.combustflame.2014.06.001

    Article  Google Scholar 

  16. Akkerman V, Bychkov V, Petchenko A, Eriksson LE (2006) Accelerating flames in cylindrical tubes with nonslip at the walls. Combust Flame 145:206–219. https://doi.org/10.1016/j.combustflame.2005.10.011

    Article  Google Scholar 

  17. Bychkov V, Akkerman V, Fru G, Petchenko A, Eriksson L-E (2007) Flame acceleration in the early stages of burning in tubes. Combust Flame 150:263–276. https://doi.org/10.1016/j.combustflame.2007.01.004

    Article  Google Scholar 

  18. Bychkov V, Petchenko A, Akkerman V, Eriksson LE (2005) Theory and modeling of accelerating flames in tubes. Phys Rev E Stat Nonlinear Soft Matter Phys 72:1–10. https://doi.org/10.1103/PhysRevE.72.046307

    Article  MathSciNet  Google Scholar 

  19. Xiao H, Wang Q, He X, Sun J, Shen X (2011) Experimental study on the behaviors and shape changes of premixed hydrogen–air flames propagating in horizontal duct. Int J Hydrog Energy 36:6325–6336. https://doi.org/10.1016/j.ijhydene.2011.02.049

    Article  Google Scholar 

  20. Xiao H, Makarov D, Sun J, Molkov V (2012) Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct. Combust Flame 159:1523–1538. https://doi.org/10.1016/j.combustflame.2011.12.003

    Article  Google Scholar 

  21. Xiao H, Wang Q, Shen X, Guo S, Sun J (2013) An experimental study of distorted tulip flame formation in a closed duct. Combust Flame 160:1725–1728. https://doi.org/10.1016/j.combustflame.2013.03.011

    Article  Google Scholar 

  22. Xiao H, An W, Duan Q, Sun J (2013) Dynamics of premixed hydrogen/air flame in a closed combustion vessel. Int J Hydrog Energy 38:12856–12864. https://doi.org/10.1016/j.ijhydene.2013.07.082

    Article  Google Scholar 

  23. Xiao H, Duan Q, Jiang L, Sun J (2014) Effects of ignition location on premixed hydrogen/air flame propagation in a closed combustion tube. Int J Hydrog Energy 39:8557–8563. https://doi.org/10.1016/j.ijhydene.2014.03.164

    Article  Google Scholar 

  24. Xiao H, Sun J, Chen P (2014) Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber. J Hazard Mater 268:132–139. https://doi.org/10.1016/j.jhazmat.2013.12.060

    Article  Google Scholar 

  25. Shen X, Xu J, Wen JX (2021) Phenomenological characteristics of hydrogen/air premixed flame propagation in closed rectangular channels. Renew Energy 174:606–615. https://doi.org/10.1016/j.renene.2021.04.056

    Article  Google Scholar 

  26. Zheng K, Yu M, Zheng L, Wen X, Chu T, Wang L (2017) Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts. Int J Hydrog Energy 42:5426–5438. https://doi.org/10.1016/j.ijhydene.2016.10.106

    Article  Google Scholar 

  27. Yu M, Zheng K, Zheng L, Chu T (2015) Scale effects on premixed flame propagation of hydrogen/methane deflagration. Int J Hydrog Energy 40:13121–13133. https://doi.org/10.1016/j.ijhydene.2015.07.143

    Article  Google Scholar 

  28. Yu M, Zheng K, Zheng L, Chu T, Guo P (2015) Effects of hydrogen addition on propagation characteristics of premixed methane/air flames. J Loss Prev Process Ind 34:1–9. https://doi.org/10.1016/j.jlp.2015.01.017

    Article  Google Scholar 

  29. Yu M, Yang X, Zheng K, Zheng L, Wan S (2018) Experimental study of premixed syngas/air flame propagation in a half-open duct. Fuel 225:192–202. https://doi.org/10.1016/j.fuel.2018.03.127

    Article  Google Scholar 

  30. Yu M, Yang X, Zheng K, Zheng L, Wen X (2018) Experimental study of premixed syngas/air flame deflagration in a closed duct. Int J Hydrog Energy 43:13676–13686. https://doi.org/10.1016/j.ijhydene.2018.05.103

    Article  Google Scholar 

  31. Hariharan A, Wichman IS (2014) Premixed flame propagation and morphology in a constant volume combustion chamber. Combust Sci Technol 186:1025–1040. https://doi.org/10.1080/00102202.2014.897340

    Article  Google Scholar 

  32. Hariharan A, Wichman IS (2015) Structure and propagation of premixed flames in a closed combustion chamber with multiple ignition sources. Combust Sci Technol 187:1562–1583. https://doi.org/10.1080/00102202.2015.1050554

    Article  Google Scholar 

  33. Li J, Zhang P, Yuan L, Pan Z, Zhu Y (2017) Flame propagation and detonation initiation distance of ethylene/oxygen in narrow gap. Appl Therm Eng 110:1247–1282. https://doi.org/10.1016/j.applthermaleng.2016.09.037

    Article  Google Scholar 

  34. Dunn-Rankin D, Sawyer RF (1998) Tulip flames: changes in shape of premixed flames propagating in closed tubes. Exp Fluids 24:130–140

    Article  Google Scholar 

  35. Yang X, Yu M, Zheng K, Wan S, Wang L (2019) A comparative investigation of premixed flame propagation behavior of syngas–air mixtures in closed and half-open ducts. Energy 178:436–446. https://doi.org/10.1016/j.energy.2019.04.135

    Article  Google Scholar 

  36. Yang X, Yu M, Zheng K, Wan S, Wang L (2019) An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct. Fuel 237:619–629. https://doi.org/10.1016/j.fuel.2018.10.055

    Article  Google Scholar 

  37. Emami SD, Sulaiman SZ, Kasmani RM, Hamid MD, Che Hassan CR (2016) Effect of pipe configurations on flame propagation of hydrocarbons–air and hydrogen–air mixtures in a constant volume. J Loss Prev Process Ind 39:141–151. https://doi.org/10.1016/j.jlp.2015.11.005

    Article  Google Scholar 

  38. Song Y, Zhang Y, Chen Y, Liu X, Fu M, Li Y (2021) Numerical investigation of effects on premixed hydrogen/air flame propagation in pipes with different contraction or expansion angles. J Loss Prev Process Ind 70:104201. https://doi.org/10.1016/j.jlp.2020.104201

    Article  Google Scholar 

  39. Mendiburu Z, Serra AM, De CA, Engineering M, Ufrgs S, Leite RS et al (2019) Characterization of the flame front inversion of ethanol–air deflagrations inside a closed tube. Energy 187:1–12. https://doi.org/10.1016/j.energy.2019.115932

    Article  Google Scholar 

  40. ASTM E-681 (2010) Standard test method for concentration limits of flammability of chemicals (vapors and gases). Am Soc Test Mater 09:1–12. https://doi.org/10.1520/E0681-09R15.2

    Article  Google Scholar 

  41. Brown D (2002) Tracker—video analysis and modelling tool

  42. Goodwin DG, Moffat HK, Speth RL (2018) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://doi.org/10.5281/zenodo.170284

  43. Marinov N (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Int J Chem Kinet 31:183–220. https://doi.org/10.1002/(SICI)1097-4601(1999)31:3%3c183::AID-KIN3%3e3.0.CO;2-X

    Article  Google Scholar 

  44. Mendiburu AZ, Lauermann CH, Hayashi TC, Mariños DJ, Rodrigues da Costa RB, Coronado CJR et al (2022) Ethanol as a renewable biofuel: combustion characteristics and application in engines. Energy 257:124688. https://doi.org/10.1016/j.energy.2022.124688

    Article  Google Scholar 

  45. Ciccarelli G, Chaumeix N, Mendiburu AZ, Guessan KN, Comandini A (2019) Fast-flame limit for hydrogen/methane–air mixtures. Proc Combust Inst 37:3661–3668. https://doi.org/10.1016/j.proci.2018.06.045

    Article  Google Scholar 

  46. Barbosa JA, Coronado CJR, Tuna CE, Silva MH, Mendiburu AZ, Carvalho Junior JA et al (2021) Experimental determination of lower flammability limits of synthesized iso-paraffins (SIP), jet fuel and mixtures at atmospheric and reduced pressures with air. Fire Saf J. https://doi.org/10.1016/j.firesaf.2021.103276

    Article  Google Scholar 

  47. Barbosa JA, Coronado CJR, de Andrade JC, Tuna CE, Silva MH, Carvalho Junior JA et al (2022) Experimental determination of upper flammability limits of synthesized iso-paraffins (SIP), Jet fuel and their mixtures with air at atmospheric and sub-atmospheric pressures. Process Saf Environ Prot 160:102–115. https://doi.org/10.1016/j.psep.2022.02.016

    Article  Google Scholar 

  48. Carvalho JA, Mendiburu AZ, Coronado CJ, McQuay MQ (2018) Combustão aplicada. Editora da Universidade Federal de Santa Catarina, Florianópolis

    Google Scholar 

  49. Holman JP (2011) Experimental methods for engineers, 8th edn. Mc Graw Hill, New York

    Google Scholar 

  50. Gonzalez M (1996) Acoustic instability of a premixed flame propagating in a tube. Combust Flame 107:245–259. https://doi.org/10.1016/S0010-2180(96)00069-7

    Article  Google Scholar 

  51. Shen X, Zhang C, Xiu G, Zhu H (2019) Evolution of premixed stoichiometric hydrogen/air flame in a closed duct. Energy 176:265–271. https://doi.org/10.1016/j.energy.2019.03.193

    Article  Google Scholar 

  52. Shen X, He X, Sun J (2015) A comparative study on premixed hydrogen–air and propane–air flame propagations with tulip distortion in a closed duct. Fuel 161:248–253. https://doi.org/10.1016/j.fuel.2015.08.043

    Article  Google Scholar 

  53. Xiao H, Duan Q, Sun J (2017) Premixed flame propagation in hydrogen explosions. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.06.008

    Article  Google Scholar 

  54. Xiao H, Houim RW, Oran ES (2017) Effects of pressure waves on the stability of flames propagating in tubes. Proc Combust Inst 36:1577–1583. https://doi.org/10.1016/j.proci.2016.06.126

    Article  Google Scholar 

  55. GetData. GetData Graph Digitizer 2018. http://getdata-graph-digitizer.com/index.php. Accessed 7 May 2018

  56. University of California at San Diego. San Diego Mechanism 2019. https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html

  57. Law CK (2006) Combustion physics. Cambridge University Press, New York

    Book  Google Scholar 

  58. Quines R, Nzinga M, Mendiburu AZ (2021) Study of flame acceleration in closed and half-open ducts. In: Proceedings of 26th international congress mechanical engineering. ABCM. https://doi.org/10.26678/ABCM.COBEM2021.COB2021-0283

  59. Silveira J, Mendiburu AZ (2020) Relevant parameters on the formation of tulip flames. In: Procceedings 18th Brazilian Congress Thermal Science Engineering. ABCM. https://doi.org/10.26678/ABCM.ENCIT2020.CIT20-0190

  60. Jin K, Duan Q, Liew KM, Peng Z, Gong L, Sun J (2017) Experimental study on a comparison of typical premixed combustible gas–air flame propagation in a horizontal rectangular closed duct. J Hazard Mater 327:116–126. https://doi.org/10.1016/j.jhazmat.2016.12.050

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for supporting this work through Project 423369/2018-0 and to FAPERGS (Fundação de Amparo à Pesquisa do Estado de Rio Grande do Sul) for supporting this work through Project 21/2551-0000677-3. The authors are grateful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for support of this work through Projects 2015/23351-9 and 2015/25435-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Z. Mendiburu.

Additional information

Technical Editor: Mario Eduardo Santos Martins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 257 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, A.M., Andrade, J.C., Silva, L.M. et al. Experimental observation of ethanol–air premixed flames propagating inside a closed tube with high aspect ratio. J Braz. Soc. Mech. Sci. Eng. 45, 80 (2023). https://doi.org/10.1007/s40430-022-04006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-04006-8

Keywords

Navigation